If →a=4^i+7^j−5^ka→=4i^+7j^−5k^ and →b=3^i+4^j+^kb→=3i^+4j^+k^ find the direction cosines of →a−→b
a⃗−b⃗=i⃗+3j⃗−6k⃗\vec a-\vec b=\vec i+3\vec j-6\vec ka−b=i+3j−6k
(a⃗−b⃗)/∣a⃗−b⃗∣=(i⃗+3j⃗−6k⃗)/12+32+62=(\vec a-\vec b)/|\vec a-\vec b|=(\vec i+3\vec j-6\vec k)/\sqrt{1^2+3^2+6^2}=(a−b)/∣a−b∣=(i+3j−6k)/12+32+62=
=0.1474i⃗+0.4423j⃗−0.8847k⃗=0.1474\vec i+0.4423\vec j-0.8847\vec k=0.1474i+0.4423j−0.8847k
cosα=0.1474; cosβ=0.4423; cosγ=−0.8847\cos\alpha=0.1474;\ \cos\beta=0.4423;\ \cos\gamma=-0.8847cosα=0.1474; cosβ=0.4423; cosγ=−0.8847
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments