Question #261300

A 3.0-kg object has the following two forces acting on it: 

F1 = (16+ 12j) N 

F2 = (−10i + 22j) N 

If the object is initially at rest, determine its velocity v at t = 3.0 s. [INTEGRATE] 


1
Expert's answer
2021-11-07T19:29:53-0500

The total force is equal to the sum of the forces (bold font denotes vectors):


F=F1+F2=(1610)i+(12+22)j=(6i+34j)N\mathbf{F} = \mathbf{F_1} + \mathbf{F_2} = (16-10)\mathbf{i}+(12+22)\mathbf{j} = (6\mathbf{i}+34\mathbf{j})N

According to the second Newton's law, the acceleration of the object is:


a=Fm=63i+343j=(2i+343j)m/s2\mathbf{a} = \dfrac{\mathbf{F}}{m} =\dfrac{6}{3}\mathbf{i} + \dfrac{34}{3}\mathbf{j} = \left( 2\mathbf{i}+\dfrac{34}{3}\mathbf{j}\right)m/s^2


where m=3kgm = 3kg is the mass of the object.

Integrating, obtain velocity:


v=0tadt=0t(2i+343j)dt=2ti+34t3j+C\mathbf{v} = \int_0^t\mathbf{a}dt = \int_0^t\left( 2\mathbf{i}+\dfrac{34}{3}\mathbf{j}\right)dt =2t \mathbf{i}+\dfrac{34t}{3}\mathbf{j}+C

where tt is the time and CC is the constant of integration (velocity at t=0t=0 ). Since the object starts from rest, C=0C=0. Substituting t=3st = 3s, obtain:


v=23i+3433j=(6i+34j)m/s\mathbf{v}=2\cdot 3 \mathbf{i}+\dfrac{34\cdot 3}{3}\mathbf{j} = (6\mathbf{i}+34\mathbf{j})m/s

Answer. v=(6i+34j)m/s\mathbf{v}=(6\mathbf{i}+34\mathbf{j})m/s


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS