Given:
G = 6.67 ∗ 1 0 − 11 N ⋅ m 2 / k g 2 G=6.67*10^{-11}\:\rm N\cdot m^2/kg^2 G = 6.67 ∗ 1 0 − 11 N ⋅ m 2 /k g 2
R E = 6.38 ∗ 1 0 6 m R_E=6.38*10^{6}\:\rm m R E = 6.38 ∗ 1 0 6 m
h = 3.80 ∗ 1 0 6 m h=3.80*10^{6}\:\rm m h = 3.80 ∗ 1 0 6 m
M E = 5.97 ∗ 1 0 24 k g M_E=5.97*10^{24}\:\rm kg M E = 5.97 ∗ 1 0 24 kg
(a) the speed of a satellite moving in a circular orbit
v = G M E R E + h v=\sqrt{\frac{GM_E}{R_E+h}} v = R E + h G M E
v = 6.67 ∗ 1 0 − 11 ∗ 5.97 ∗ 1 0 24 6.38 ∗ 1 0 6 + 3.80 ∗ 1 0 6 = 6250 m / s v=\sqrt{\frac{6.67*10^{-11}*5.97*10^{24}}{6.38*10^{6}+3.80*10^{6}}}=6250\:\rm m/s v = 6.38 ∗ 1 0 6 + 3.80 ∗ 1 0 6 6.67 ∗ 1 0 − 11 ∗ 5.97 ∗ 1 0 24 = 6250 m/s (b) what is the period of the satellite in hours
T = 2 π ( R E + h ) v T=\frac{2\pi(R_E+h)}{v} T = v 2 π ( R E + h )
T = 2 π ( 6.38 ∗ 1 0 6 + 3.80 ∗ 1 0 6 ) 6250 = 10200 s = 2.84 h r T=\frac{2\pi(6.38*10^{6}+3.80*10^{6})}{6250}=10200\:\rm s=2.84\: hr T = 6250 2 π ( 6.38 ∗ 1 0 6 + 3.80 ∗ 1 0 6 ) = 10200 s = 2.84 hr
Comments