Question #254179

What is the speed of a satellite moving in a circular orbit at a height of 3800km above

the surface of the earth? (b) what is the period of the satellite in hours? The mass of the

earth is 5.97x10^24 kg. The radius of the earth is 6.38x10^6 m.


1
Expert's answer
2021-10-21T16:36:05-0400

Given:

G=6.671011Nm2/kg2G=6.67*10^{-11}\:\rm N\cdot m^2/kg^2

RE=6.38106mR_E=6.38*10^{6}\:\rm m

h=3.80106mh=3.80*10^{6}\:\rm m

ME=5.971024kgM_E=5.97*10^{24}\:\rm kg


(a) the speed of a satellite moving in a circular orbit 

v=GMERE+hv=\sqrt{\frac{GM_E}{R_E+h}}

v=6.6710115.9710246.38106+3.80106=6250m/sv=\sqrt{\frac{6.67*10^{-11}*5.97*10^{24}}{6.38*10^{6}+3.80*10^{6}}}=6250\:\rm m/s

(b) what is the period of the satellite in hours

T=2π(RE+h)vT=\frac{2\pi(R_E+h)}{v}

T=2π(6.38106+3.80106)6250=10200s=2.84hrT=\frac{2\pi(6.38*10^{6}+3.80*10^{6})}{6250}=10200\:\rm s=2.84\: hr


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS