What is the speed of a satellite moving in a circular orbit at a height of 3800km above
the surface of the earth? (b) what is the period of the satellite in hours? The mass of the
earth is 5.97x10^24 kg. The radius of the earth is 6.38x10^6 m.
Given:
"G=6.67*10^{-11}\\:\\rm N\\cdot m^2\/kg^2"
"R_E=6.38*10^{6}\\:\\rm m"
"h=3.80*10^{6}\\:\\rm m"
"M_E=5.97*10^{24}\\:\\rm kg"
(a) the speed of a satellite moving in a circular orbit
"v=\\sqrt{\\frac{GM_E}{R_E+h}}""v=\\sqrt{\\frac{6.67*10^{-11}*5.97*10^{24}}{6.38*10^{6}+3.80*10^{6}}}=6250\\:\\rm m\/s"
(b) what is the period of the satellite in hours
"T=\\frac{2\\pi(R_E+h)}{v}""T=\\frac{2\\pi(6.38*10^{6}+3.80*10^{6})}{6250}=10200\\:\\rm s=2.84\\: hr"
Comments
Leave a comment