The potential from the outer ring:
"V_p=\\frac\\sigma{2\\epsilon_0}[R\\sqrt{2}-\\sqrt{R^2+(R-A)^2}]." The potential of the inner disk:
"V_p=\\frac\\sigma{2\\epsilon_0}(R\\sqrt{2}-R)."
For the field to be zero, these potentials must be equal:
"\\frac\\sigma{2\\epsilon_0}[R\\sqrt{2}-\\sqrt{R^2+(R-A)^2}]=\\frac\\sigma{2\\epsilon_0}[R\\sqrt{2}-R],\\\\\\space\\\\\n\\sqrt{R^2+(R-A)^2}=R,\\\\\nR^2+R^2-A^2-2AR=R^2,\\\\\nA^2+2AR-R^2=0,\\\\\\space\\\\\nA=\\frac{\\sqrt{4R^2+4R^2}-2R}{2}=R(\\sqrt2-1)."
Comments
Leave a comment