Question #249469
A small spherical steel ball of radius
a of a material of density à   falls from rest in still air of viscosity à Ž ·. Now (i) Write up
the equation of motion of the ball, (ii) Estimate its terminal velocity, and (iii) Find out
the time and distance traversed when the ball has acquired 90% of the terminal
velocity.
1
Expert's answer
2021-10-13T15:43:48-0400

(i) For a small ball and low speed


F=ma(mgρagV)(6πηr)v=mdvdtabv=mdvdtF=ma\to (mg-\rho_agV)-(6\pi\eta r)v=m\frac{dv}{dt}\to a-bv=m\frac{dv}{dt}

v(t)=ab(1ebt/m)=mgρagV6πηr(1e6πηrt/m)=v0(1e6πηrt/m)v(t)=\frac{a}{b}(1-e^{-bt/m})=\frac{mg-\rho_agV}{6\pi\eta r}(1-e^{-6\pi\eta rt/m})=v_0(1-e^{-6\pi\eta rt/m})

m=(4/3)πr3ρm=(4/3)\pi r^3\rho

v(t)=v0(1e9ηt/2ρr2)v(t)=v_0(1-e^{-9\eta t/2\rho r^2})


(ii) v0=mgρagV6πηr=2gr2(ρρa)9ηv_0=\frac{mg-\rho_agV}{6\pi\eta r}=\frac{2gr^2(\rho-\rho_a)}{9\eta}


(iii) 0.9v0=v0(1e9ηt/2ρr2)t=2ρr2ln109η0.9v_0=v_0(1-e^{-9\eta t/2\rho r^2})\to t=\frac{2\rho r^2\ln10}{9\eta}


l=0tv(t)dt=0tv0(1e9ηt/2ρr2)dtl=\int_0^tv(t)dt=\int_0^tv_0(1-e^{-9\eta t/2\rho r^2})dt





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS