Dimensions of young modulus:
E = [ M ] 1 [ L ] − 1 [ T ] − 2 E=[M]^1[L]^{-1}[T]^{-2} E = [ M ] 1 [ L ] − 1 [ T ] − 2 Dimensions of density:
ρ = [ M ] 1 [ L ] − 3 \rho=[M]^1[L]^{-3} ρ = [ M ] 1 [ L ] − 3 Speed of sound:
v = [ L ] [ T ] − 1 v=[L][T]^{-1} v = [ L ] [ T ] − 1 Obtain the relationship:
[L]^1[T]^{-1}=([M]^1[L]^{-1}[T]^{-2})^a·([M]^1[L]^{-3})^b,\\
[L]^1[T]^{-1}=[M]^{a+b}[L]^{-a-3b}[T]^{-2a}. Equate the power of each dimension (powers on the left with powers on the right):
[T]^{-1}=[T]^{-2a},\\
-1=-2a→a=\frac12.\\\space\\
[M]^0=[M]^{a+b},\\
0=a+b→b=-\frac12. Therefore, we have
( [ L ] 1 [ T ] − 1 ) = = ( [ M ] 1 [ L ] − 1 [ T ] − 2 ) 1 2 ⋅ ( [ M ] 1 [ L ] − 3 ) − 1 2 , \Big([L]^1[T]^{-1}\Big)=\\=\Big([M]^1[L]^{-1}[T]^{-2}\Big)^{\frac12}·\Big([M]^1[L]^{-3}\Big)^{-\frac12}, ( [ L ] 1 [ T ] − 1 ) = = ( [ M ] 1 [ L ] − 1 [ T ] − 2 ) 2 1 ⋅ ( [ M ] 1 [ L ] − 3 ) − 2 1 , which corresponds to
v = E ρ . v=\sqrt\frac E\rho. v = ρ E .
Comments