Question #249145
The velocity of sound V in a metal is dependent in the young modulus E and the density e. Use the method of dimension to derive the relationship between the parameters
1
Expert's answer
2021-10-10T16:04:20-0400

Dimensions of young modulus:


E=[M]1[L]1[T]2E=[M]^1[L]^{-1}[T]^{-2}

Dimensions of density:


ρ=[M]1[L]3\rho=[M]^1[L]^{-3}

Speed of sound:


v=[L][T]1v=[L][T]^{-1}

Obtain the relationship:

[L]^1[T]^{-1}=([M]^1[L]^{-1}[T]^{-2})^a·([M]^1[L]^{-3})^b,\\ [L]^1[T]^{-1}=[M]^{a+b}[L]^{-a-3b}[T]^{-2a}.

Equate the power of each dimension (powers on the left with powers on the right):


[T]^{-1}=[T]^{-2a},\\ -1=-2a→a=\frac12.\\\space\\ [M]^0=[M]^{a+b},\\ 0=a+b→b=-\frac12.

Therefore, we have

([L]1[T]1)==([M]1[L]1[T]2)12([M]1[L]3)12,\Big([L]^1[T]^{-1}\Big)=\\=\Big([M]^1[L]^{-1}[T]^{-2}\Big)^{\frac12}·\Big([M]^1[L]^{-3}\Big)^{-\frac12},

which corresponds to


v=Eρ.v=\sqrt\frac E\rho.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS