Question #245024

A 4kg block of ice at -6°C is put in the water (initial temperature 20°C) in an insulated container.

How much water was there initially, if the final temperature of this system after all of the ice melted is 14°C?

Answer in kilograms to the nearest 0.1kg.

following specific heats and latent heats might be useful:

Cwater = 4186J/kgC

Cice = 2090J/kgC

Csteam =1996J/kgC

Lfusion  = 333000J/kg

Lvaporization=2.25x106J/kg


1
Expert's answer
2021-10-07T08:48:23-0400

Given:

m=4kgm=4\:\rm kg

t_1=-6\:^{\circ}\rm C

t_2=20\:^{\circ}\rm C

t_3=0\:^{\circ}\rm C

t_4=14\:^{\circ}\rm C

cice=2090J/kgCc_{\rm ice} = 2090\:\rm J/kg \cdot C

cwater=4186J/kgCc_{\rm water} = 4186\:\rm J/kg \cdot C

λ=333000J/kg\lambda = 333000\:\rm J/kg

M?M-?


The amount of heat obtained by ice:


Qice=Q1+Q2+Q3=cicem(t3t1)+λm+cwaterm(t4t3)Q_{\rm ice}=Q_1+Q_2+Q_3\\ =c_{\rm ice} m(t_3-t_1)+\lambda m+c_{\rm water}m(t_4-t_3)

Qice=209046+3330004+4186414=1616576JQ_{\rm ice}=2090*4*6+333000*4+4186*4*14\\ =1616576\:\rm J

The heat balance equation says

Qice=QwaterQ_{\rm ice}=Q_{\rm water}

Hence


1616576J=cwaterM(t2t4)1616576\:{\rm J}=c_{\rm water}M(t_2-t_4)

Finally

M=161657641866=64.36kgM=\frac{1616576}{4186*6}=64.36\:\rm kg


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS