Question #244005
A body vibrating with simple harmonic motion has a frequency of 4Hz and an amplitude of 0.15m. calculate
i) the maximum values of the acceleration and velocity
Ii) the acceleration and velocity at a point 0.09m from the equilibrium.
1
Expert's answer
2021-09-29T09:54:48-0400

Given:

ω=2πf=23.144Hz=25rad/s\omega=2\pi f=2*3.14*4\:\rm Hz=25\: rad/s

A=0.15mA=0.15\:\rm m


The equation of motion of SHO:

x=Acosωtx=A\cos\omega t

The velocity

v=x=Aωsinωt=Aω1cos2ωt=ωA2x2v=x'=-A\omega\sin\omega t\\=-A\omega\sqrt{1-\cos^2\omega t}=-\omega\sqrt{A^2-x^2}

The acceleration

a=v=Aω2cosωt=ω2xa=v'=-A\omega^2\cos\omega t=-\omega^2x

Hence,

i) the maximum values of the acceleration and velocity


amax=ω2A=2520.15=94.7m/s2a_{\max}=\omega^2A=25^2*0.15=94.7\:\rm m/s^2

vmax=ωA=250.15=3.75m/sv_{\max}=\omega A=25*0.15=3.75\:\rm m/s

ii) the acceleration and velocity at a point 0.09m from the equilibrium

a=ω2x=2520.09=56.3m/s2a=-\omega^2x=-25^2*0.09=-56.3\:\rm m/s^2

v=250.1520.092=3.00m/sv=-25\sqrt{0.15^2-0.09^2}=-3.00\rm \: m/s


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS