Question #243064

Data on the compressive strength of a concrete block after testing are as follows: 2.50 MPa, 2.55 MPa, 2.52 MPa, 2.51 MPa, and 2.56 MPa. Find the absolute uncertainty.


1
Expert's answer
2021-09-28T11:13:05-0400

First, find the deviation of each value from the average value μ\mu:


μ=2.50+2.55+2.52+2.51+2.565=2.53 MPa.\mu=\frac{2.50 + 2.55 +2.52 +2.51 + 2.56}{5}=2.53\text{ MPa}.

Find the deviations:

δ1=μx1=2.532.50=0.03 MPa,δ2=μx2=2.532.55=0.02 MPa,δ3=0.01 MPa,δ4=0.02 MPa,δ5=0.03 MPa.\delta_1=|\mu-x_1|=2.53-2.50=0.03\text{ MPa},\\ \delta_2=|\mu-x_2|=|2.53-2.55|=0.02\text{ MPa},\\ \delta_3=0.01\text{ MPa},\\ \delta_4=0.02\text{ MPa},\\ \delta_5=0.03\text{ MPa}.

The absolute uncertainty is


δ=i=1nδin=0.03+0.02+0.01+0.02+0.035=0.02 MPa.\delta=\frac{\sum^n_{i=1}\delta_i}{n}=\frac{0.03+0.02+0.01+0.02+0.03}{5}=0.02\text{ MPa}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS