Question #243008

A 1,000 kg car running at 50 km/h eastward a head-on collision with a 2,000 kg truck running at 30 km/h. If the two vehicles are locked together after collision, calculate the final velocity of the wreckage. What is the loss in kinetic energy of the system?


1
Expert's answer
2021-09-29T17:51:12-0400

We can find the final velocity of the wreckage from the law of conservation of energy:


m1v1im2v2i=(m1+m2)vf,m_1v_{1i}-m_2v_{2i}=(m_1+m_2)v_f,vf=m1v1im2v2im1+m2,v_f=\dfrac{m_1v_{1i}-m_2v_{2i}}{m_1+m_2},vf=1000 kg13.89 ms2000 kg8.33 ms1000 kg+2000 kg=0.92 ms.v_f=\dfrac{1000\ kg\cdot13.89\ \dfrac{m}{s}-2000\ kg\cdot8.33\ \dfrac{m}{s}}{1000\ kg+2000\ kg}=-0.92\ \dfrac{m}{s}.

The sign minus means that the final velocity of the wreckage directed to the west.

We can find the loss in kinetic energy of the system as follows:


ΔKE=KEiKEf,\Delta KE=KE_i-KE_f,ΔKE=12m1v1i2+12m2v2i212(m1+m2)vf2,\Delta KE=\dfrac{1}{2}m_1v_{1i}^2+\dfrac{1}{2}m_2v_{2i}^2-\dfrac{1}{2}(m_1+m_2)v_{f}^2,

ΔKE=121000 kg(13.89 ms)2+122000 kg(8.33 ms)212(1000 kg+2000 kg)(0.92 ms)2=165 kJ.\Delta KE=\dfrac{1}{2}\cdot1000\ kg\cdot(13.89\ \dfrac{m}{s})^2+\dfrac{1}{2}\cdot2000\ kg\cdot(8.33\ \dfrac{m}{s})^2-\dfrac{1}{2}\cdot(1000\ kg+2000\ kg)\cdot(0.92\ \dfrac{m}{s})^2=165\ kJ.

Answer:

vf=0.92 ms,v_f=0.92\ \dfrac{m}{s}, to the west.

ΔKE=165 kJ.\Delta KE=165\ kJ.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS