A canoe on a river flowing 0.50 đť‘š/đť‘ east has a velocity of 0.40 đť‘š/đť‘ southeast relative to the earth. Find the magnitude and the direction of the canoe’s velocity relative to the river.Â
Given:
"{\\bf u}=0.50\\hat i\\:\\rm m\/s"
"{\\bf V}=\\frac{0.40}{\\sqrt{2}}(\\hat i-\\hat j)\\:\\rm m\/s"
The velocity of a canoe relative to the earth
"{\\bf V}={\\bf u}+{\\bf v}"Hence, the velocity of a canoe relative to the river
"{\\bf v}={\\bf V}-{\\bf u}""=\\frac{0.40}{\\sqrt{2}}(\\hat i-\\hat j)-0.50\\hat i=-0.217\\hat i-0.283\\hat j"
Magnitude:
"v=\\sqrt{0.217^2+0.283^2}=0.36\\:\\rm m\/s"Direction:
"\\theta=\\tan^{-1}\\frac{-0.283}{-0.217}=53^{\\circ}\\quad \\rm S\\;of\\; W"
Comments
Leave a comment