1. Apply the law of cosines to find the magnitude and the law of sines to find the angle toward East counting from North:
"R=\\sqrt{A^2+B^2-2AB\\cos\\rho}=\\\\\n=\\sqrt{3^2+4^2-2\u00b73\u00b74\\cos120\u00b0}=6.1\\text{ N}.\\\\\\space\\\\\n\\frac{B}{\\sin\\beta}=\\frac{R}{\\sin\\rho},\\\\\\space\\\\\n\\beta=\\arcsin\\bigg(\\frac BR\\sin\\rho\\bigg)=34.6\u00b0\\text{ E of N}." 2. The components are
"R_x=R_E=30\\cos30=26\\text N,\\\\\nR_y=R_N=30\\sin30\u00b0=15\\text N." 3. The resultant vector:
"R_E=4\\cos40\u00b0+2-5.2\\cos30\u00b0-0=0.56\\text m.\\\\\nR_N=4\\sin40\u00b0+2-5.2\\sin30\u00b0-6.5=-4.53\\text m.\\\\\nR=\\sqrt{R_N^2+R_E^2}=4.56\\text{ m},\\\\\\space\\\\\n\\theta=\\arctan\\frac{R_N}{R_E}=-83\u00b0\\text{ S of E.}" 4. The displacement is
"D=\\sqrt{15^2+5^2}=15.8\\text{ m}."
Comments
Leave a comment