Question #240849
the effective mass of electron in copper is m∗=1.01 me(me = mass of an electron) and the electric conductivity of copper is 5.76 ×107 Ω−1 m−1 with EF=7 eV then calculate the Fermi mean free path for copper.
1
Expert's answer
2021-09-23T08:31:31-0400

The number density of electrons:


n=NAMρ=8.431028 m3.n=\frac{N_A}{\Mu}\rho=8.43·10^{28}\text{ m}^{-3}.

Find Fermi velocity:


vF=2EFm.v_F=\sqrt{\frac{2E_F}{m^*}}.

Find relaxation time:


τ=mσe2n.\tau=\frac{m^*\sigma}{e^2n}.

Thus, the Fermi mean free path λ\lambda and conductivity are connected within the following equation:


λ=τvF=mσe2n2EFm= =σ2mEFne2= =(5.76107)2(1.019.1091031)(71.6021019)(8.431028)(1.6021019)2= =3.82108 ms1.\lambda=\tau v_F=\frac{m^*\sigma}{e^2n}\sqrt{\frac{2E_F}{m^*}}=\\\space\\ =\frac{\sigma\sqrt{2m^*E_F}}{ne^2}=\\\space\\=\frac{(5.76·10^7)\sqrt{2(1.01·9.109·10^{-31})(7·1.602·10^{-19})}}{(8.43·10^{28})(1.602·10^{-19})^2}=\\\space\\ =3.82·10^{-8}\text{ ms}^{-1}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS