The number density of electrons:
"n=\\frac{N_A}{\\Mu}\\rho=8.43\u00b710^{28}\\text{ m}^{-3}."
Find Fermi velocity:
"v_F=\\sqrt{\\frac{2E_F}{m^*}}." Find relaxation time:
"\\tau=\\frac{m^*\\sigma}{e^2n}."
Thus, the Fermi mean free path "\\lambda" and conductivity are connected within the following equation:
"\\lambda=\\tau v_F=\\frac{m^*\\sigma}{e^2n}\\sqrt{\\frac{2E_F}{m^*}}=\\\\\\space\\\\\n=\\frac{\\sigma\\sqrt{2m^*E_F}}{ne^2}=\\\\\\space\\\\=\\frac{(5.76\u00b710^7)\\sqrt{2(1.01\u00b79.109\u00b710^{-31})(7\u00b71.602\u00b710^{-19})}}{(8.43\u00b710^{28})(1.602\u00b710^{-19})^2}=\\\\\\space\\\\\n=3.82\u00b710^{-8}\\text{ ms}^{-1}."
Comments
Leave a comment