Question #240010
A ball is thrown vertically upward from the edge of a 98 m building and reaches the ground 6s after leaving the throwers hand. Assume that the throwers hands is 2 r above the roof of the building calculate the initial velocity of the ball
1
Expert's answer
2021-09-21T06:33:16-0400

The total height at which the ball was thrown is H=98+2=100 m. It took the ball some time t1t_1 to go up and reach the highest point of the trajectory above the thrower's hands hh and some time t2t_2 to cover the distance h+H.h+H. Therefore:


t1+t2=T, t1=vg, t2=2(h+H)g, h=v22g. t2=2(v22g+H)g, T=t1+t2=vg+2(v22g+H)g. Tvg=2(v22g+H)g, (Tvg)2=2(v22g+H)g, T22vTg+v2g2=v2g2+2Hg, T22vTg=2Hg, v=gT2HT=9.8621006=12.7 m/s.t_1+t_2=T,\\\space\\ t_1=\frac vg, \\\space\\ t_2=\sqrt{\frac{2(h+H)}{g}},\\\space\\ h=\frac{v^2}{2g}.\\\space\\ t_2=\sqrt{\frac{2\Big(\frac{v^2}{2g}+H\Big)}{g}},\\\space\\ T=t_1+t_2=\frac vg+\sqrt{\frac{2\Big(\frac{v^2}{2g}+H\Big)}{g}}.\\\space\\ T-\frac vg=\sqrt{\frac{2\Big(\frac{v^2}{2g}+H\Big)}{g}},\\\space\\ \bigg(T-\frac vg\bigg)^2=\frac{2\Big(\frac{v^2}{2g}+H\Big)}{g},\\\space\\ T^2-2\frac{vT}{g}+\frac{v^2}{g^2}=\frac{v^2}{g^2}+\frac{2H}{g},\\\space\\ T^2-2\frac{vT}{g}=\frac{2H}{g},\\\space\\ v=\frac{gT}{2}-\frac{H}{T}=\frac{9.8·6}{2}-\frac{100}{6}=12.7\text{ m/s}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS