(a)
v x ( t ) = d r x d t = ( 0.28 m s ) + ( 0.072 m s 2 ) t , v_x(t)=\dfrac{dr_x}{dt} = (0.28\ \dfrac{m}{s})+(0.072\ \dfrac{m}{s^2})t, v x ( t ) = d t d r x = ( 0.28 s m ) + ( 0.072 s 2 m ) t , v y ( t ) = d r y d t = ( 0.057 m s 3 ) t 2 . v_y(t)=\dfrac{dr_y}{dt} =(0.057\ \dfrac{m}{s^3})t^2. v y ( t ) = d t d r y = ( 0.057 s 3 m ) t 2 . (b) Let's first find x x x - and y y y -components of the final position of the squirrel at t = 5.0 s t=5.0\ s t = 5.0 s :
r x = ( 0.28 m s ) ⋅ 5.0 s + 0.036 m s 2 ⋅ ( 5.0 s ) 2 = 2.3 m , r_x=(0.28\ \dfrac{m}{s})\cdot5.0\ s+0.036\ \dfrac{m}{s^2}\cdot(5.0\ s)^2=2.3\ m, r x = ( 0.28 s m ) ⋅ 5.0 s + 0.036 s 2 m ⋅ ( 5.0 s ) 2 = 2.3 m , r y = ( 0.019 m s 3 ) ⋅ ( 5.0 s ) 3 = 2.4 m . r_y=(0.019\ \dfrac{m}{s^3})\cdot(5.0\ s)^3=2.4\ m. r y = ( 0.019 s 3 m ) ⋅ ( 5.0 s ) 3 = 2.4 m . Finally, we can find the final position of the squirrel at t = 5.0 s t=5.0\ s t = 5.0 s from the Pythagorean theorem:
r = r x 2 + r y 2 = ( 2.3 m ) 2 + ( 2.4 m ) 2 = 3.3 m . r=\sqrt{r_x^2+r_y^2}=\sqrt{(2.3\ m)^2+(2.4\ m)^2}=3.3\ m. r = r x 2 + r y 2 = ( 2.3 m ) 2 + ( 2.4 m ) 2 = 3.3 m . (c) Let's first find x x x - and y y y -components of the squirrel's velocity at t = 5.0 s t=5.0\ s t = 5.0 s :
v x ( t = 5.0 s ) = ( 0.28 m s ) + ( 0.072 m s 2 ) ⋅ 5.0 s = 0.64 m s , v_x(t=5.0\ s)= (0.28\ \dfrac{m}{s})+(0.072\ \dfrac{m}{s^2})\cdot5.0\ s=0.64\ \dfrac{m}{s}, v x ( t = 5.0 s ) = ( 0.28 s m ) + ( 0.072 s 2 m ) ⋅ 5.0 s = 0.64 s m , v y ( t = 5.0 s ) = ( 0.057 m s 3 ) ⋅ ( 5.0 s ) 2 = 1.43 m s . v_y(t=5.0\ s)=(0.057\ \dfrac{m}{s^3})\cdot(5.0\ s)^2=1.43\ \dfrac{m}{s}. v y ( t = 5.0 s ) = ( 0.057 s 3 m ) ⋅ ( 5.0 s ) 2 = 1.43 s m . We can find the magnitude of the squirrel's velocity from the Pythagorean theorem:
v = v x 2 + v y 2 = ( 0.64 m s ) 2 + ( 1.43 m s ) 2 = 1.6 m s . v=\sqrt{v_x^2+v_y^2}=\sqrt{(0.64\ \dfrac{m}{s})^2+(1.43\ \dfrac{m}{s})^2}=1.6\ \dfrac{m}{s}. v = v x 2 + v y 2 = ( 0.64 s m ) 2 + ( 1.43 s m ) 2 = 1.6 s m . We can find the direction of the squirrel's velocity from the geometry:
θ = t a n − 1 ( v y v x ) , \theta=tan^{-1}(\dfrac{v_y}{v_x}), θ = t a n − 1 ( v x v y ) , θ = t a n − 1 ( 1.43 m s 0.64 m s ) = 6 6 ∘ . \theta=tan^{-1}(\dfrac{1.43\ \dfrac{m}{s}}{0.64\ \dfrac{m}{s}})=66^{\circ}. θ = t a n − 1 ( 0.64 s m 1.43 s m ) = 6 6 ∘ .
Comments