Question #236332

The position of a squirrel running in a park is given by 𝑟 = [(310.280𝑚/𝑠)𝑡 + (0.0360𝑚/𝑠 2 )𝑡 2 ]𝑖̂+ (0.0190𝑚/𝑠 3 )𝑡 3 𝑗̂. (a) What are 𝑣𝑥(𝑡) and 𝑣𝑦(𝑡), the 𝑥- and 𝑦-components of the velocity of the squirrel, as functions of time? (b) At 𝑡 = 5.00 s, how far is the squirrel from its initial position? (c) At 𝑡 = 5.00 s, what are the magnitude and direction of the squirrel’s velocity?


1
Expert's answer
2021-09-20T10:01:21-0400

(a)

vx(t)=drxdt=(0.28 ms)+(0.072 ms2)t,v_x(t)=\dfrac{dr_x}{dt} = (0.28\ \dfrac{m}{s})+(0.072\ \dfrac{m}{s^2})t,vy(t)=drydt=(0.057 ms3)t2.v_y(t)=\dfrac{dr_y}{dt} =(0.057\ \dfrac{m}{s^3})t^2.

(b) Let's first find xx- and yy-components of the final position of the squirrel at t=5.0 st=5.0\ s:


rx=(0.28 ms)5.0 s+0.036 ms2(5.0 s)2=2.3 m,r_x=(0.28\ \dfrac{m}{s})\cdot5.0\ s+0.036\ \dfrac{m}{s^2}\cdot(5.0\ s)^2=2.3\ m,ry=(0.019 ms3)(5.0 s)3=2.4 m.r_y=(0.019\ \dfrac{m}{s^3})\cdot(5.0\ s)^3=2.4\ m.

Finally, we can find the final position of the squirrel at t=5.0 st=5.0\ s from the Pythagorean theorem:


r=rx2+ry2=(2.3 m)2+(2.4 m)2=3.3 m.r=\sqrt{r_x^2+r_y^2}=\sqrt{(2.3\ m)^2+(2.4\ m)^2}=3.3\ m.

(c) Let's first find xx- and yy-components of the squirrel's velocity at t=5.0 st=5.0\ s:


vx(t=5.0 s)=(0.28 ms)+(0.072 ms2)5.0 s=0.64 ms,v_x(t=5.0\ s)= (0.28\ \dfrac{m}{s})+(0.072\ \dfrac{m}{s^2})\cdot5.0\ s=0.64\ \dfrac{m}{s},vy(t=5.0 s)=(0.057 ms3)(5.0 s)2=1.43 ms.v_y(t=5.0\ s)=(0.057\ \dfrac{m}{s^3})\cdot(5.0\ s)^2=1.43\ \dfrac{m}{s}.

We can find the magnitude of the squirrel's velocity from the Pythagorean theorem:


v=vx2+vy2=(0.64 ms)2+(1.43 ms)2=1.6 ms.v=\sqrt{v_x^2+v_y^2}=\sqrt{(0.64\ \dfrac{m}{s})^2+(1.43\ \dfrac{m}{s})^2}=1.6\ \dfrac{m}{s}.

We can find the direction of the squirrel's velocity from the geometry:


θ=tan1(vyvx),\theta=tan^{-1}(\dfrac{v_y}{v_x}),θ=tan1(1.43 ms0.64 ms)=66.\theta=tan^{-1}(\dfrac{1.43\ \dfrac{m}{s}}{0.64\ \dfrac{m}{s}})=66^{\circ}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS