Question #233596

 The following forces act on an object resting on a level and frictionless surface: 10 N to the north; 20 N to the east; 10 N at an angle 40o south of east; and 20 N at an angle 50o west of south. Find the magnitude and the direction of the resultant force acting on an object.


1
Expert's answer
2021-09-06T11:35:03-0400

Let's first find xx- and yy-components of resultant force:

Fx=10 Ncos90+20 Ncos0+10 Ncos320+20 Ncos230=14.8 N,F_x=10\ N\cdot cos90^{\circ}+20\ N\cdot cos0^{\circ}+10\ N\cdot cos320^{\circ}+20\ N\cdot cos230^{\circ}=14.8\ N,

Fy=10 Nsin90+20 Nsin0+10 Nsin320+20 Nsin230=11.75 N.F_y=10\ N\cdot sin90^{\circ}+20\ N\cdot sin0^{\circ}+10\ N\cdot sin320^{\circ}+20\ N\cdot sin230^{\circ}=-11.75\ N.

We can find the magnitude of the resultant force acting on an object from the Pythagorean theorem:


F=Fx2+Fy2=(14.8 N)2+(11.75 N)2=18.9 N.F=\sqrt{F_x^2+F_y^2}=\sqrt{(14.8\ N)^2+(-11.75\ N)^2}=18.9\ N.

We can find the direction of the resultant force acting on an object from the geometry:


θ=sin1(FyF)=sin1(11.75 N18.9 N)=38 S of E.\theta=sin^{-1}(\dfrac{F_y}{F})=sin^{-1}(\dfrac{-11.75\ N}{18.9\ N})=38^{\circ}\ S\ of\ E.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS