Samuel leaves the end of a 4.0-m-high diving board and strikes the
water 1.3 s later, 3.0 m beyond the end of the board. Considering the
diver as a particle, determine:
(a) His initial velocity,
(b) The maximum height reached;
(c) The velocity Vf
with which he enters the water.
Given:
"H=4.0\\:\\rm m"
"L=3.0\\:\\rm m"
"\\tau=1.3\\:\\rm s"
The equations of motion of a diver
"x(t)=v_0\\cos\\theta *t\\\\\ny(t)=H+v_0\\sin\\theta*t-\\frac{gt^2}{2}"We get:
"L=v_0\\cos\\theta *\\tau\\\\\n0=H+v_0\\sin\\theta*\\tau-\\frac{g\\tau^2}{2}""3=v_0\\cos\\theta *1.3\\\\\n0=4+v_0\\sin\\theta*1.3-\\frac{9.8*1.3^2}{2}"
"v_0\\cos\\theta=2.3\\\\\nv_0\\sin\\theta=3.3"
(a)
"v_0=\\sqrt{2.3^2+3.3^2}=4.0\\:\\rm m\/s""\\sin\\theta=3.3\/4.0=0.82"(b)
"v_0\\sin\\theta-gt^*=0\\\\\nt^*=3.3\/9.8=0.34\\:\\rm s""H_{\\rm max}=y(t^*)=H+v_0\\sin\\theta*t^*-\\frac{gt^{*2}}{2}\\\\\n=4+3.3*0.34-\\frac{9.8*0.34^2}{2}=4.6\\:\\rm m"
(c)
"v_f=\\sqrt{v_0^2+2gH}=\\sqrt{4.0^2+2*9.8*4}=9.7\\:\\rm m\/s"
Comments
Leave a comment