Question #231391

Samuel leaves the end of a 4.0-m-high diving board and strikes the 

water 1.3 s later, 3.0 m beyond the end of the board. Considering the 

diver as a particle, determine: 

(a) His initial velocity,

 (b) The maximum height reached;

 (c) The velocity Vf

 with which he enters the water.


1
Expert's answer
2021-08-31T08:58:15-0400

Given:

H=4.0mH=4.0\:\rm m

L=3.0mL=3.0\:\rm m

τ=1.3s\tau=1.3\:\rm s


The equations of motion of a diver

x(t)=v0cosθty(t)=H+v0sinθtgt22x(t)=v_0\cos\theta *t\\ y(t)=H+v_0\sin\theta*t-\frac{gt^2}{2}

We get:

L=v0cosθτ0=H+v0sinθτgτ22L=v_0\cos\theta *\tau\\ 0=H+v_0\sin\theta*\tau-\frac{g\tau^2}{2}

3=v0cosθ1.30=4+v0sinθ1.39.81.3223=v_0\cos\theta *1.3\\ 0=4+v_0\sin\theta*1.3-\frac{9.8*1.3^2}{2}

v0cosθ=2.3v0sinθ=3.3v_0\cos\theta=2.3\\ v_0\sin\theta=3.3

(a)

v0=2.32+3.32=4.0m/sv_0=\sqrt{2.3^2+3.3^2}=4.0\:\rm m/ssinθ=3.3/4.0=0.82\sin\theta=3.3/4.0=0.82

(b)

v0sinθgt=0t=3.3/9.8=0.34sv_0\sin\theta-gt^*=0\\ t^*=3.3/9.8=0.34\:\rm s

Hmax=y(t)=H+v0sinθtgt22=4+3.30.349.80.3422=4.6mH_{\rm max}=y(t^*)=H+v_0\sin\theta*t^*-\frac{gt^{*2}}{2}\\ =4+3.3*0.34-\frac{9.8*0.34^2}{2}=4.6\:\rm m

(c)

vf=v02+2gH=4.02+29.84=9.7m/sv_f=\sqrt{v_0^2+2gH}=\sqrt{4.0^2+2*9.8*4}=9.7\:\rm m/s


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS