Question #225374

A body moves with an initial velocity of 30ms -1 and accelerates uniformly until it attains the velocity 80ms-1. It then continue at that velocity for some time and decelerates uniformly to rest. The total time taken for the journey is 40 and the total distance traveled is 2550 km. If the time spent accelerating is half that of traveling at constant velocity.calculate the acceleration 


1
Expert's answer
2021-08-12T06:19:23-0400

Let:

t1t_1 is a time of acceleration;

t2t_2 is a time of uniform motion;

t3t_3 is a time of deceleration.

We get

t1+t2+t3=6  hrt_1+t_2+t_3=6 \;\rm hr

t1+t3=t2/2t_1+t_3=t_2/2

Thus,

t2=12/3hr=14400st_2=12/3\:\rm hr=14400\: s

t3=14400st1t_3=14400\:{\rm s}-t_1

The total distance

d=d1+d2+d3d=d_1+d_2+d_3

d=v1+v22t1+v2t2+v2+02t3d=\frac{v_1+v_2}{2}t_1+v_2t_2+\frac{v_2+0}{2}t_3

2550000m=30m/s+80m/s2t1+80m/s14400s2550000\:{\rm m}=\frac{30\: {\rm m/s}+80\:{\rm m/s}}{2}*t_1+80\:{\rm m/s}*14400\:{\rm s}

+80m/s+02(14400st1)\\+\frac{80\:\rm m/s+0}{2}*(14400\:{\rm s}-t_1)822000=15t1822000=15t_1

We obtain

t1=54800st_1=54800\:\rm s

The acceleration

a=v2v1t1=803054800=0.0009m/s2a=\frac{v_2-v_1}{t_1}=\frac{80-30}{54800}=0.0009\:\rm m/s^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS