Question #224944

The length of the spring becomes 29cm when a load of 6kg is hung on it. If the elastic potential energy stored in the spring is 2.7J, calculate the original length of the spring?


1
Expert's answer
2021-08-11T09:53:56-0400

Express the spring constant from energy:


E=12kΔx2, E=12kΔx2, k=2EΔx2.E=\frac12 k\Delta x^2,\\\space\\ E=\frac12 k \Delta x^2,\\\space\\ k=\frac{2E}{\Delta x^2}.

By Hooke's law:


mg=kΔx, k=mgΔx.mg=k\Delta x,\\\space\\ k=\frac{mg}{\Delta x}.

Substitute:


mgΔx=2EΔx2, Δx=2Emg=9.2 cm.\frac{mg}{\Delta x}=\frac{2E}{\Delta x^2},\\\space\\ \Delta x=\frac{2E}{mg}=9.2\text{ cm}.

What is Δx\Delta x?


Δx=xfxi, xi=xfΔx=299.2=19.8 cm.\Delta x=x_f-x_i,\\\space\\ x_i=x_f-\Delta x=29-9.2=19.8\text{ cm}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS