Kerosene leaks out a hole 0.50 in.in diameterat thebottom of a tank at a rate of 10gal/min. How high is the kerosene in the tank?
Given:
"d=0.50\\:\\rm in=1.27\\: cm"
"\\frac{\\Delta V}{\\Delta t}=10\\:\\rm gal\/min=6.31*10^{-4}\\: m^3\/s"
The flow rate
"\\frac{\\Delta V}{\\Delta t}=\\frac{Av\\Delta t}{\\Delta t}=Av=\\pi d^2\/4*v"The speed of a flow
"v=\\sqrt{2gH}"Therefore,
"H=\\frac{(4\\frac{\\Delta V}{\\Delta t}\/\\pi d^2)^2}{2g}""=\\frac{(4*6.31*10^{-4}\/3.14*(1.27*10^{-2})^2)^2}{2*9.8}=1.27\\:\\rm m"
Comments
Leave a comment