Question #224812

Kerosene leaks out a hole 0.50 in.in diameterat thebottom of a tank at a rate of 10gal/min. How high is the kerosene in the tank?


1
Expert's answer
2021-08-11T09:54:12-0400

Given:

d=0.50in=1.27cmd=0.50\:\rm in=1.27\: cm

ΔVΔt=10gal/min=6.31104m3/s\frac{\Delta V}{\Delta t}=10\:\rm gal/min=6.31*10^{-4}\: m^3/s

The flow rate

ΔVΔt=AvΔtΔt=Av=πd2/4v\frac{\Delta V}{\Delta t}=\frac{Av\Delta t}{\Delta t}=Av=\pi d^2/4*v

The speed of a flow

v=2gHv=\sqrt{2gH}

Therefore,

H=(4ΔVΔt/πd2)22gH=\frac{(4\frac{\Delta V}{\Delta t}/\pi d^2)^2}{2g}

=(46.31104/3.14(1.27102)2)229.8=1.27m=\frac{(4*6.31*10^{-4}/3.14*(1.27*10^{-2})^2)^2}{2*9.8}=1.27\:\rm m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS