Question #223849

Water enters a pipe of diameter 3.0 cm and at a speed of 40 cm/s at the ground level of an office building. The pipe tapers down to 1.0 cm in diameter at the top floor, 35 cm above, where the absolute pressure in 1.2 atm. What is the pressure at the ground level?


1
Expert's answer
2021-08-07T03:32:33-0400

Let's first find the speed of the water at the top floor from the law of continuity:


A1v1=A2v2,A_1v_1=A_2v_2,v2=A1v1A2=πr12v1πr22,v_2=\dfrac{A_1v_1}{A_2}=\dfrac{\pi r_1^2v_1}{\pi r_2^2},v2=(0.015 m)20.4 ms(0.005 m)2=3.6 ms.v_2=\dfrac{(0.015\ m)^2\cdot0.4\ \dfrac{m}{s}}{(0.005\ m)^2}=3.6\ \dfrac{m}{s}.

We can find the pressure at the ground level from the Bernoulli's equation:


12ρv12+ρgh1+P1=12ρv22+ρgh2+P2,\dfrac{1}{2}\rho v_1^2+\rho gh_1+P_1= \dfrac{1}{2}\rho v_2^2+\rho gh_2+P_2,12ρv12+P1=12ρv22+ρgh2+P2,\dfrac{1}{2}\rho v_1^2+P_1= \dfrac{1}{2}\rho v_2^2+\rho gh_2+P_2,P1=P2+12ρ(v22v12)+ρgh2,P_1=P_2+\dfrac{1}{2}\rho(v_2^2-v_1^2)+\rho gh_2,

P1=1.2 atm101325 Pa1 atm+121000 kgm3((3.6 ms)2(0.4 ms)2)+1000 kgm39.8 ms20.35 m=1.31105 Pa.P_1=1.2\ atm\cdot\dfrac{101325\ Pa}{1\ atm}+\dfrac{1}{2}\cdot1000\ \dfrac{kg}{m^3}\cdot((3.6\ \dfrac{m}{s})^2-(0.4\ \dfrac{m}{s})^2)+1000\ \dfrac{kg}{m^3}\cdot9.8\ \dfrac{m}{s^2}\cdot0.35\ m=1.31\cdot10^5\ Pa.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS