Question #218724

Two point charges are placed as follows: charge q1= -1.50 nC is at y= +6.00 m and charge q2= +3.20 nC is at the origin. What is the total force (magnitude and direction) exerted by these two charges on a negative point charge q3= -5.00 nC located at (2.00 m, -4.00 m)?


1
Expert's answer
2021-07-19T14:24:28-0400

Let's first find the magnitude of the force with which the charge q1q_1 acts on charge q3q_3:


F13=kq1q3r132=kq1q3(r122+r232)2​​,F_{13}=\dfrac{kq_1q_3}{r_{13}^2}=\dfrac{kq_1q_3}{(\sqrt{r_{12}^2+r_{23}^2})^2} ​ ​ ,F13=9109 Nm2C21.5109 C5109 C((6 m)2+((2 m)2+(4 m)2)2)2=1.205109 N.F_{13}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot1.5\cdot10^{-9}\ C\cdot5\cdot10^{-9}\ C}{(\sqrt{(6\ m)^2+(\sqrt{(2\ m)^2+(4\ m)^2})^2})^2}=1.205\cdot10^{-9}\ N.

Similarly, let's find the magnitude of the force with which the charge q2q_2 acts on charge q3q_3:


F23=kq2q3r232,F_{23}=\dfrac{kq_2q_3}{r_{23}^2},F23=9109 Nm2C23.2109 C5109 C((2 m)2+(4 m)2)2=7.2109 N.F_{23}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot3.2\cdot10^{-9}\ C\cdot5\cdot10^{-9}\ C}{(\sqrt{(2\ m)^2+(4\ m)^2})^2}=7.2\cdot10^{-9}\ N.

Let's find the projections of forces F13F_{13} and F23F_{23} on axis xx and yy:


F13,x=F13r23r13=1.205109 N(2 m)2+(4 m)2(6 m)2+((2 m)2+(4 m)2)2,F_{13,x}=F_{13}\cdot\dfrac{r_{23}}{r_{13}}=1.205\cdot10^{-9}\ N\cdot\dfrac{\sqrt{(2\ m)^2+(4\ m)^2}}{\sqrt{(6\ m)^2+(\sqrt{(2\ m)^2+(4\ m)^2})^2}},F13,x=7.21010 N.F_{13,x}=7.2\cdot10^{-10}\ N.F13,y=F13r12r13=1.205109 N6 m(6 m)2+((2 m)2+(4 m)2)2,F_{13,y}=-F_{13}\cdot\dfrac{r_{12}}{r_{13}}=-1.205\cdot10^{-9}\ N\cdot\dfrac{6\ m}{\sqrt{(6\ m)^2+(\sqrt{(2\ m)^2+(4\ m)^2})^2}},F13,y=9.661010 N.F_{13,y}=-9.66\cdot10^{-10}\ N.F23,x=F23r23r13=7.2109 N(2 m)2+(4 m)2(6 m)2+((2 m)2+(4 m)2)2,F_{23, x}=-F_{23}\cdot\dfrac{r_{23}}{r_{13}}=-7.2\cdot10^{-9}\ N\cdot\dfrac{\sqrt{(2\ m)^2+(4\ m)^2}}{\sqrt{(6\ m)^2+(\sqrt{(2\ m)^2+(4\ m)^2})^2}},F23,x=4.3109 N.F_{23, x}=-4.3\cdot10^{-9}\ N.F23,y=F23r12r13=7.2109 N6 m(6 m)2+((2 m)2+(4 m)2)2,F_{23,y}=F_{23}\cdot\dfrac{r_{12}}{r_{13}}=7.2\cdot10^{-9}\ N\cdot\dfrac{6\ m}{\sqrt{(6\ m)^2+(\sqrt{(2\ m)^2+(4\ m)^2})^2}},F23,y=5.77109 N.F_{23,y}=5.77\cdot10^{-9}\ N.

Then, we get:


Fx=F13,x+F23,x=7.21010 N+(4.3109 N)=3.58109 N,F_x=F_{13,x}+F_{23,x}=7.2\cdot10^{-10}\ N+(-4.3\cdot10^{-9}\ N)=-3.58\cdot10^{-9}\ N,Fy=F13,y+F23,y=(9.661010 N)+5.77109 N=4.8109 N.F_y=F_{13,y}+F_{23,y}=(-9.66\cdot10^{-10}\ N)+5.77\cdot10^{-9}\ N=4.8\cdot10^{-9}\ N.

We can find the total electrostatic force on the charge q3q_3 from the Pythagorean theorem:


F=Fx2+Fy2,F=\sqrt{F_x^2+F_y^2},F=(3.58109 N)2+(4.8109 N)2=5.98109 N.F=\sqrt{(-3.58\cdot10^{-9}\ N)^2+(4.8\cdot10^{-9}\ N)^2}=5.98\cdot10^{-9}\ N.

We can find the direction of the total electrostatic force on the charge q3q_3 from the geometry:


tanθ=FyFx,tan\theta=\dfrac{F_y}{F_x},θ=tan1(FyFx),\theta=tan^{-1}(\dfrac{F_y}{F_x}),θ=tan1(4.8109 N3.58109 N)=53.3.\theta=tan^{-1}(\dfrac{4.8\cdot10^{-9}\ N}{-3.58\cdot10^{-9}\ N})=53.3^{\circ}.

The total electrostatic force on the charge q3q_3 directed at 53.353.3^{\circ} below the xx-axis.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS