Let's first find the magnitude of the force with which the charge "q_1" acts on charge "q_3":
"F_{13}=\\dfrac{kq_1q_3}{r_{13}^2}=\\dfrac{kq_1q_3}{(\\sqrt{r_{12}^2+r_{23}^2})^2}\n\u200b\n \n\u200b\n ,""F_{13}=\\dfrac{9\\cdot10^9\\ \\dfrac{Nm^2}{C^2}\\cdot1.5\\cdot10^{-9}\\ C\\cdot5\\cdot10^{-9}\\ C}{(\\sqrt{(6\\ m)^2+(\\sqrt{(2\\ m)^2+(4\\ m)^2})^2})^2}=1.205\\cdot10^{-9}\\ N."Similarly, let's find the magnitude of the force with which the charge "q_2" acts on charge "q_3":
"F_{23}=\\dfrac{kq_2q_3}{r_{23}^2},""F_{23}=\\dfrac{9\\cdot10^9\\ \\dfrac{Nm^2}{C^2}\\cdot3.2\\cdot10^{-9}\\ C\\cdot5\\cdot10^{-9}\\ C}{(\\sqrt{(2\\ m)^2+(4\\ m)^2})^2}=7.2\\cdot10^{-9}\\ N."Let's find the projections of forces "F_{13}" and "F_{23}" on axis "x" and "y":
"F_{13,x}=F_{13}\\cdot\\dfrac{r_{23}}{r_{13}}=1.205\\cdot10^{-9}\\ N\\cdot\\dfrac{\\sqrt{(2\\ m)^2+(4\\ m)^2}}{\\sqrt{(6\\ m)^2+(\\sqrt{(2\\ m)^2+(4\\ m)^2})^2}},""F_{13,x}=7.2\\cdot10^{-10}\\ N.""F_{13,y}=-F_{13}\\cdot\\dfrac{r_{12}}{r_{13}}=-1.205\\cdot10^{-9}\\ N\\cdot\\dfrac{6\\ m}{\\sqrt{(6\\ m)^2+(\\sqrt{(2\\ m)^2+(4\\ m)^2})^2}},""F_{13,y}=-9.66\\cdot10^{-10}\\ N.""F_{23, x}=-F_{23}\\cdot\\dfrac{r_{23}}{r_{13}}=-7.2\\cdot10^{-9}\\ N\\cdot\\dfrac{\\sqrt{(2\\ m)^2+(4\\ m)^2}}{\\sqrt{(6\\ m)^2+(\\sqrt{(2\\ m)^2+(4\\ m)^2})^2}},""F_{23, x}=-4.3\\cdot10^{-9}\\ N.""F_{23,y}=F_{23}\\cdot\\dfrac{r_{12}}{r_{13}}=7.2\\cdot10^{-9}\\ N\\cdot\\dfrac{6\\ m}{\\sqrt{(6\\ m)^2+(\\sqrt{(2\\ m)^2+(4\\ m)^2})^2}},""F_{23,y}=5.77\\cdot10^{-9}\\ N."Then, we get:
"F_x=F_{13,x}+F_{23,x}=7.2\\cdot10^{-10}\\ N+(-4.3\\cdot10^{-9}\\ N)=-3.58\\cdot10^{-9}\\ N,""F_y=F_{13,y}+F_{23,y}=(-9.66\\cdot10^{-10}\\ N)+5.77\\cdot10^{-9}\\ N=4.8\\cdot10^{-9}\\ N."We can find the total electrostatic force on the charge "q_3" from the Pythagorean theorem:
"F=\\sqrt{F_x^2+F_y^2},""F=\\sqrt{(-3.58\\cdot10^{-9}\\ N)^2+(4.8\\cdot10^{-9}\\ N)^2}=5.98\\cdot10^{-9}\\ N."We can find the direction of the total electrostatic force on the charge "q_3" from the geometry:
"tan\\theta=\\dfrac{F_y}{F_x},""\\theta=tan^{-1}(\\dfrac{F_y}{F_x}),""\\theta=tan^{-1}(\\dfrac{4.8\\cdot10^{-9}\\ N}{-3.58\\cdot10^{-9}\\ N})=53.3^{\\circ}."The total electrostatic force on the charge "q_3" directed at "53.3^{\\circ}" below the "x"-axis.
Comments
Leave a comment