From Newton's second law:
{ T 1 → + w 1 → = m a 1 → T 1 → + w 2 → = 2 m a 1 → → { T 1 − m g = m a 1 2 m g − T 1 = 2 m a 1 \begin{cases}
\overrightarrow{T_1}+\overrightarrow{w_1}=m\overrightarrow{a_1} \\
\overrightarrow{T_1}+\overrightarrow{w_2} =2m\overrightarrow{a_1}
\end{cases}
\rightarrow
\begin{cases}
T_1-mg=ma_1 \\
2mg-T_1 =2ma_1
\end{cases} { T 1 + w 1 = m a 1 T 1 + w 2 = 2 m a 1 → { T 1 − m g = m a 1 2 m g − T 1 = 2 m a 1 2 m g − T 1 = 2 ( T 1 − m g ) → T 1 = m g 2mg-T_1 =2(T_1 -mg) \rightarrow T_1=mg 2 m g − T 1 = 2 ( T 1 − m g ) → T 1 = m g and
{ T 2 → + w 4 → = 2 m a 2 → T 2 → + w 3 → = ( m + m + 2 m ) a 2 → → \begin{cases}
\overrightarrow{T_2}+\overrightarrow{w_4}=2m\overrightarrow{a_2} \\
\overrightarrow{T_2}+\overrightarrow{w_3} =(m+m+2m)\overrightarrow{a_2}
\end{cases}
\rightarrow { T 2 + w 4 = 2 m a 2 T 2 + w 3 = ( m + m + 2 m ) a 2 → { T 2 − 2 m g = 2 m a 2 ( m + m + 2 m ) g − T 2 = ( m + m + 2 m ) a 2 \begin{cases}
T_2-2mg=2ma_2 \\
(m+m+2m)g-T_2 =(m+m+2m)a_2
\end{cases} { T 2 − 2 m g = 2 m a 2 ( m + m + 2 m ) g − T 2 = ( m + m + 2 m ) a 2 4 m g − T 2 = 2 ( T 2 − 2 m g ) → T 2 = 2 m g 4mg-T_2=2(T_2-2mg) \rightarrow T_2=2mg 4 m g − T 2 = 2 ( T 2 − 2 m g ) → T 2 = 2 m g In the first system of equations, we do not take into account the acceleration a2 , since this acceleration determines the motion of the entire system and not of individual parts. We can choose an appropriate coordinate system in which a2 =0.
Answer : T 1 = m g , T 2 = 2 m g T_1=mg, \space T_2=2mg T 1 = m g , T 2 = 2 m g
Comments