https://docs.google.com/drawings/d/1QNR2JD0TWfX6jTZ0HCIZR2GEXD_mDnLqPwEVQgAh4Bo/edit?usp=sharing
find the tension with the steps
From Newton's second law:
and
"\\begin{cases}\n \\overrightarrow{T_2}+\\overrightarrow{w_4}=2m\\overrightarrow{a_2} \\\\\n \\overrightarrow{T_2}+\\overrightarrow{w_3} =(m+m+2m)\\overrightarrow{a_2}\n\\end{cases}\n\\rightarrow""\\begin{cases}\n T_2-2mg=2ma_2 \\\\\n (m+m+2m)g-T_2 =(m+m+2m)a_2\n\\end{cases}""4mg-T_2=2(T_2-2mg) \\rightarrow T_2=2mg"In the first system of equations, we do not take into account the acceleration a2, since this acceleration determines the motion of the entire system and not of individual parts. We can choose an appropriate coordinate system in which a2=0.
Answer: "T_1=mg, \\space T_2=2mg"
Comments
Leave a comment