A particle with a charge of -1.24x10^8 C is moving with instantaneous velocity (1.49x10^4m/s) î +(-3.85x10^4m/s) ĵ. What is the force exerted on this particle by a magnetic field
(a) (1.40T)î+ (-2.30T)k̂
(b) (-1.25T)î+ (2.00T)ĵ + (-3.50T)k̂
(a) Let’s write the magnetic force that acts on the particle travelling with a velocity in a magnetic field :
Let us first calculate the cross product "\\vec{v}\\times \\vec{B}":
Substituting components of "v" and "B", we get:
Finally, we can find the magnetic force:
"F=-1.24\\cdot10^8\\ C\\cdot[(8.85\\cdot10^4\\ \\dfrac{m\\cdot T}{s})\\hat{i}+(3.43\\cdot10^4\\ \\dfrac{m\\cdot T}{s})\\hat{j}+(5.39\\cdot10^4\\ \\dfrac{m\\cdot T}{s})\\hat{k}],"
"F=(-1.1\\cdot10^{13}\\ N)\\hat{i}-(4.25\\cdot10^{12}\\ N)\\hat{j}-(6.68\\cdot10^{12}\\ N)\\hat{k}."(b) Let’s write the magnetic force that acts on the particle travelling with a velocity in a magnetic field :
Let us first calculate the cross product "\\vec{v}\\times \\vec{B}":
Substituting components of "v" and "B", we get:
Finally, we can find the magnetic force:
"F=-1.24\\cdot10^8\\ C\\cdot[(1.35\\cdot10^5\\ \\dfrac{m\\cdot T}{s})\\hat{i}+(5.21\\cdot10^4\\ \\dfrac{m\\cdot T}{s})\\hat{j}-(1.83\\cdot10^4\\ \\dfrac{m\\cdot T}{s})\\hat{k}],"
"F=(-1.67\\cdot10^{13}\\ N)\\hat{i}-(6.46\\cdot10^{12}\\ N)\\hat{j}+(2.27\\cdot10^{12}\\ N)\\hat{k}."
Comments
Leave a comment