(a) Let’s write the magnetic force that acts on the particle travelling with a velocity in a magnetic field :
F = q ( v × B ) . F=q(v\times B). F = q ( v × B ) . Let us first calculate the cross product v ⃗ × B ⃗ \vec{v}\times \vec{B} v × B :
v ⃗ × B ⃗ = ∣ i ^ j ^ k ^ v x v y 0 B x 0 B z ∣ , \vec{v}\times \vec{B}=\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
v_x & v_y & 0 \\
B_x & 0 & B_z
\end{vmatrix}, v × B = ∣ ∣ i ^ v x B x j ^ v y 0 k ^ 0 B z ∣ ∣ , v ⃗ × B ⃗ = i ^ ∣ v y 0 0 B z ∣ − j ^ ∣ v x 0 B x B z ∣ + k ^ ∣ v x v y B x 0 ∣ , \vec{v}\times \vec{B}=\hat{i}\begin{vmatrix}
v_y & 0 \\
0 & B_z
\end{vmatrix}-\hat{j}\begin{vmatrix}
v_x & 0 \\
B_x & B_z
\end{vmatrix}+\hat{k}\begin{vmatrix}
v_x & v_y \\
B_x & 0
\end{vmatrix}, v × B = i ^ ∣ ∣ v y 0 0 B z ∣ ∣ − j ^ ∣ ∣ v x B x 0 B z ∣ ∣ + k ^ ∣ ∣ v x B x v y 0 ∣ ∣ , v ⃗ × B ⃗ = ( v y B z ) i ^ − ( v x B z ) j ^ + ( − v y B x ) k ^ , \vec{v}\times \vec{B}=(v_yB_z)\hat{i}-(v_xB_z)\hat{j}+(-v_yB_x)\hat{k}, v × B = ( v y B z ) i ^ − ( v x B z ) j ^ + ( − v y B x ) k ^ , Substituting components of v v v and B B B , we get:
v ⃗ × B ⃗ = ( 8.85 ⋅ 1 0 4 m ⋅ T s ) i ^ + ( 3.43 ⋅ 1 0 4 m ⋅ T s ) j ^ + ( 5.39 ⋅ 1 0 4 m ⋅ T s ) k ^ . \vec{v}\times \vec{B}=(8.85\cdot10^4\ \dfrac{m\cdot T}{s})\hat{i}+(3.43\cdot10^4\ \dfrac{m\cdot T}{s})\hat{j}+(5.39\cdot10^4\ \dfrac{m\cdot T}{s})\hat{k}. v × B = ( 8.85 ⋅ 1 0 4 s m ⋅ T ) i ^ + ( 3.43 ⋅ 1 0 4 s m ⋅ T ) j ^ + ( 5.39 ⋅ 1 0 4 s m ⋅ T ) k ^ . Finally, we can find the magnetic force:
F = − 1.24 ⋅ 1 0 8 C ⋅ [ ( 8.85 ⋅ 1 0 4 m ⋅ T s ) i ^ + ( 3.43 ⋅ 1 0 4 m ⋅ T s ) j ^ + ( 5.39 ⋅ 1 0 4 m ⋅ T s ) k ^ ] , F=-1.24\cdot10^8\ C\cdot[(8.85\cdot10^4\ \dfrac{m\cdot T}{s})\hat{i}+(3.43\cdot10^4\ \dfrac{m\cdot T}{s})\hat{j}+(5.39\cdot10^4\ \dfrac{m\cdot T}{s})\hat{k}], F = − 1.24 ⋅ 1 0 8 C ⋅ [( 8.85 ⋅ 1 0 4 s m ⋅ T ) i ^ + ( 3.43 ⋅ 1 0 4 s m ⋅ T ) j ^ + ( 5.39 ⋅ 1 0 4 s m ⋅ T ) k ^ ] ,
F = ( − 1.1 ⋅ 1 0 13 N ) i ^ − ( 4.25 ⋅ 1 0 12 N ) j ^ − ( 6.68 ⋅ 1 0 12 N ) k ^ . F=(-1.1\cdot10^{13}\ N)\hat{i}-(4.25\cdot10^{12}\ N)\hat{j}-(6.68\cdot10^{12}\ N)\hat{k}. F = ( − 1.1 ⋅ 1 0 13 N ) i ^ − ( 4.25 ⋅ 1 0 12 N ) j ^ − ( 6.68 ⋅ 1 0 12 N ) k ^ . (b) Let’s write the magnetic force that acts on the particle travelling with a velocity in a magnetic field :
F = q ( v × B ) . F=q(v\times B). F = q ( v × B ) . Let us first calculate the cross product v ⃗ × B ⃗ \vec{v}\times \vec{B} v × B :
v ⃗ × B ⃗ = ∣ i ^ j ^ k ^ v x v y 0 B x B y B z ∣ , \vec{v}\times \vec{B}=\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
v_x & v_y & 0 \\
B_x & B_y & B_z
\end{vmatrix}, v × B = ∣ ∣ i ^ v x B x j ^ v y B y k ^ 0 B z ∣ ∣ , v ⃗ × B ⃗ = i ^ ∣ v y 0 0 B z ∣ − j ^ ∣ v x 0 B x B z ∣ + k ^ ∣ v x v y B x B y ∣ , \vec{v}\times \vec{B}=\hat{i}\begin{vmatrix}
v_y & 0 \\
0 & B_z
\end{vmatrix}-\hat{j}\begin{vmatrix}
v_x & 0 \\
B_x & B_z
\end{vmatrix}+\hat{k}\begin{vmatrix}
v_x & v_y \\
B_x & B_y
\end{vmatrix}, v × B = i ^ ∣ ∣ v y 0 0 B z ∣ ∣ − j ^ ∣ ∣ v x B x 0 B z ∣ ∣ + k ^ ∣ ∣ v x B x v y B y ∣ ∣ , v ⃗ × B ⃗ = ( v y B z ) i ^ − ( v x B z ) j ^ + ( v x B y − v y B x ) k ^ , \vec{v}\times \vec{B}=(v_yB_z)\hat{i}-(v_xB_z)\hat{j}+(v_xB_y-v_yB_x)\hat{k}, v × B = ( v y B z ) i ^ − ( v x B z ) j ^ + ( v x B y − v y B x ) k ^ , Substituting components of v v v and B B B , we get:
v ⃗ × B ⃗ = ( 1.35 ⋅ 1 0 5 m ⋅ T s ) i ^ + ( 5.21 ⋅ 1 0 4 m ⋅ T s ) j ^ − ( 1.83 ⋅ 1 0 4 m ⋅ T s ) k ^ . \vec{v}\times \vec{B}=(1.35\cdot10^5\ \dfrac{m\cdot T}{s})\hat{i}+(5.21\cdot10^4\ \dfrac{m\cdot T}{s})\hat{j}-(1.83\cdot10^4\ \dfrac{m\cdot T}{s})\hat{k}. v × B = ( 1.35 ⋅ 1 0 5 s m ⋅ T ) i ^ + ( 5.21 ⋅ 1 0 4 s m ⋅ T ) j ^ − ( 1.83 ⋅ 1 0 4 s m ⋅ T ) k ^ . Finally, we can find the magnetic force:
F = − 1.24 ⋅ 1 0 8 C ⋅ [ ( 1.35 ⋅ 1 0 5 m ⋅ T s ) i ^ + ( 5.21 ⋅ 1 0 4 m ⋅ T s ) j ^ − ( 1.83 ⋅ 1 0 4 m ⋅ T s ) k ^ ] , F=-1.24\cdot10^8\ C\cdot[(1.35\cdot10^5\ \dfrac{m\cdot T}{s})\hat{i}+(5.21\cdot10^4\ \dfrac{m\cdot T}{s})\hat{j}-(1.83\cdot10^4\ \dfrac{m\cdot T}{s})\hat{k}], F = − 1.24 ⋅ 1 0 8 C ⋅ [( 1.35 ⋅ 1 0 5 s m ⋅ T ) i ^ + ( 5.21 ⋅ 1 0 4 s m ⋅ T ) j ^ − ( 1.83 ⋅ 1 0 4 s m ⋅ T ) k ^ ] ,
F = ( − 1.67 ⋅ 1 0 13 N ) i ^ − ( 6.46 ⋅ 1 0 12 N ) j ^ + ( 2.27 ⋅ 1 0 12 N ) k ^ . F=(-1.67\cdot10^{13}\ N)\hat{i}-(6.46\cdot10^{12}\ N)\hat{j}+(2.27\cdot10^{12}\ N)\hat{k}. F = ( − 1.67 ⋅ 1 0 13 N ) i ^ − ( 6.46 ⋅ 1 0 12 N ) j ^ + ( 2.27 ⋅ 1 0 12 N ) k ^ .
Comments