Question #209676

A particle with a charge of -1.24x10^8 C is moving with instantaneous velocity (1.49x10^4m/s) î +(-3.85x10^4m/s) ĵ.​ What is the force exerted on this particle by a magnetic field

(a) (1.40T)î+ (-2.30T)

(b) (-1.25T)î+ (2.00T)ĵ + (-3.50T)

1
Expert's answer
2021-06-22T16:59:02-0400

(a) Let’s write the magnetic force that acts on the particle travelling with a velocity in a magnetic field :


F=q(v×B).F=q(v\times B).

Let us first calculate the cross product v×B\vec{v}\times \vec{B}:


v×B=i^j^k^vxvy0Bx0Bz,\vec{v}\times \vec{B}=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ v_x & v_y & 0 \\ B_x & 0 & B_z \end{vmatrix},v×B=i^vy00Bzj^vx0BxBz+k^vxvyBx0,\vec{v}\times \vec{B}=\hat{i}\begin{vmatrix} v_y & 0 \\ 0 & B_z \end{vmatrix}-\hat{j}\begin{vmatrix} v_x & 0 \\ B_x & B_z \end{vmatrix}+\hat{k}\begin{vmatrix} v_x & v_y \\ B_x & 0 \end{vmatrix},v×B=(vyBz)i^(vxBz)j^+(vyBx)k^,\vec{v}\times \vec{B}=(v_yB_z)\hat{i}-(v_xB_z)\hat{j}+(-v_yB_x)\hat{k},

Substituting components of vv and BB, we get:


v×B=(8.85104 mTs)i^+(3.43104 mTs)j^+(5.39104 mTs)k^.\vec{v}\times \vec{B}=(8.85\cdot10^4\ \dfrac{m\cdot T}{s})\hat{i}+(3.43\cdot10^4\ \dfrac{m\cdot T}{s})\hat{j}+(5.39\cdot10^4\ \dfrac{m\cdot T}{s})\hat{k}.

Finally, we can find the magnetic force:

F=1.24108 C[(8.85104 mTs)i^+(3.43104 mTs)j^+(5.39104 mTs)k^],F=-1.24\cdot10^8\ C\cdot[(8.85\cdot10^4\ \dfrac{m\cdot T}{s})\hat{i}+(3.43\cdot10^4\ \dfrac{m\cdot T}{s})\hat{j}+(5.39\cdot10^4\ \dfrac{m\cdot T}{s})\hat{k}],

F=(1.11013 N)i^(4.251012 N)j^(6.681012 N)k^.F=(-1.1\cdot10^{13}\ N)\hat{i}-(4.25\cdot10^{12}\ N)\hat{j}-(6.68\cdot10^{12}\ N)\hat{k}.

(b) Let’s write the magnetic force that acts on the particle travelling with a velocity in a magnetic field :


F=q(v×B).F=q(v\times B).

Let us first calculate the cross product v×B\vec{v}\times \vec{B}:


v×B=i^j^k^vxvy0BxByBz,\vec{v}\times \vec{B}=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ v_x & v_y & 0 \\ B_x & B_y & B_z \end{vmatrix},v×B=i^vy00Bzj^vx0BxBz+k^vxvyBxBy,\vec{v}\times \vec{B}=\hat{i}\begin{vmatrix} v_y & 0 \\ 0 & B_z \end{vmatrix}-\hat{j}\begin{vmatrix} v_x & 0 \\ B_x & B_z \end{vmatrix}+\hat{k}\begin{vmatrix} v_x & v_y \\ B_x & B_y \end{vmatrix},v×B=(vyBz)i^(vxBz)j^+(vxByvyBx)k^,\vec{v}\times \vec{B}=(v_yB_z)\hat{i}-(v_xB_z)\hat{j}+(v_xB_y-v_yB_x)\hat{k},

Substituting components of vv and BB, we get:


v×B=(1.35105 mTs)i^+(5.21104 mTs)j^(1.83104 mTs)k^.\vec{v}\times \vec{B}=(1.35\cdot10^5\ \dfrac{m\cdot T}{s})\hat{i}+(5.21\cdot10^4\ \dfrac{m\cdot T}{s})\hat{j}-(1.83\cdot10^4\ \dfrac{m\cdot T}{s})\hat{k}.

Finally, we can find the magnetic force:

F=1.24108 C[(1.35105 mTs)i^+(5.21104 mTs)j^(1.83104 mTs)k^],F=-1.24\cdot10^8\ C\cdot[(1.35\cdot10^5\ \dfrac{m\cdot T}{s})\hat{i}+(5.21\cdot10^4\ \dfrac{m\cdot T}{s})\hat{j}-(1.83\cdot10^4\ \dfrac{m\cdot T}{s})\hat{k}],

F=(1.671013 N)i^(6.461012 N)j^+(2.271012 N)k^.F=(-1.67\cdot10^{13}\ N)\hat{i}-(6.46\cdot10^{12}\ N)\hat{j}+(2.27\cdot10^{12}\ N)\hat{k}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS