In the lungs, the respiratory membrane separates tiny sacs of air (pressure 1.00x105Pa) from the blood in
the capillaries. These sacs are called alveoli. The average radius of the alveoli is 0.125 mm, and the air
inside contains 14% oxygen. Assuming that the air behaves as an ideal gas at 310K, calculate the number
of oxygen molecules in one of these sacs.
"N_0=N\\cdot0.14"
"pV=\\frac{m}{M}RT\\to m=\\frac{pVM}{RT}=\\frac{100000\\cdot4\/3\\cdot3.14\\cdot0.000125^3\\cdot0.029}{8.31\\cdot310}=9.2\\cdot10^{-12}\\ (kg)"
"m\/M=N\/N_A\\to N=mN_A\/M=9.2\\cdot10^{-12}\\cdot6.02\\cdot10^{23}\/0.029=1.91\\cdot10^{14}"
"N_0=N\\cdot0.14=1.91\\cdot10^{14}\\cdot0.14=2.7\\cdot10^{13}" . Answer
Comments
Leave a comment