The initial kinetic energy imparted to a 0.022 bullet is 1300 J. Find the range of this projectile when it is fired at an angle such that the range is equals the maximum height attained.
lmax=v2sin(2α)/gl_{max}=v^2\sin(2\alpha)/glmax=v2sin(2α)/g
hmax=v2sin2α/(2g)h_{max}=v^2\sin^2\alpha/(2g)hmax=v2sin2α/(2g)
v2sin2α/(2g)=v2sin(2α)/g→α=75.96°v^2\sin^2\alpha/(2g)=v^2\sin(2\alpha)/g\to\alpha=75.96°v2sin2α/(2g)=v2sin(2α)/g→α=75.96°
mv2/2=1300→v=2600/0.022=344 (m/s)mv^2/2=1300\to v=\sqrt{2600/0.022}=344\ (m/s)mv2/2=1300→v=2600/0.022=344 (m/s). So,
lmax=v2sin(2α)/g=3442⋅sin(2⋅75.96)/9.8=5684 (m)l_{max}=v^2\sin(2\alpha)/g=344^2\cdot\sin(2\cdot75.96)/9.8=5684\ (m)lmax=v2sin(2α)/g=3442⋅sin(2⋅75.96)/9.8=5684 (m) . Answer
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments