Question #199807

Two points are placed as follows: Charge q¹= -1.50 nC is at y=+6.00m and charge q²=+3.20 nC is at the origin. What is the total force (magnitude and direction) exerted by these two charges on a negative point charge q³= -5.00 nC located at (2.00m, -4.00 m)?


1
Expert's answer
2021-05-30T13:28:10-0400

Make a sketch:



Find the force from the first on the third and the angle:


F13=kq1q3r132=kq1q3(x1x3)2+(y1y3)2=6.48 N. θ13=arctanx1x3y1y3=11.3°.|F_{13}|=\frac{kq_1q_3}{r_{13}^2}=\frac{kq_1q_3}{(x_1-x_3)^2+(y_1-y_3)^2}=6.48\text{ N}.\\\space\\ \theta_{13}=\arctan\frac{x_1-x_3}{y_1-y_3}=11.3°.

Force from the second on the third charge and the angle:


F23=kq2q3r232=kq2q3(x2x3)2+(y2y3)2=7.2 N. θ23=arctanx2x3y2y3=26.6°.|F_{23}|=\frac{kq_2q_3}{r_{23}^2}=\frac{kq_2q_3}{(x_2-x_3)^2+(y_2-y_3)^2}=7.2\text{ N}.\\\space\\ \theta_{23}=\arctan\frac{x_2-x_3}{y_2-y_3}=26.6°.

Find the components of the forces:


F13x=1.27N,F13y=6.35N,F23x=3.22N,F23y=6.44N. FR=(F13xF23x)2+(F13yF23y)2,FR=1.95 N. θR=arctanF13xF23xF13yF23y=87°F_{13x}=1.27\text{N},\\ F_{13y}=6.35\text{N},\\ F_{23x}=3.22\text{N},\\ F_{23y}=6.44\text{N}.\\\space\\ |F_R|=\sqrt{(F_{13x}-F_{23x})^2+(F_{13y}-F_{23y})^2},\\ |F_R|=1.95\text{ N}.\\\space\\ \theta_R=\arctan\frac{F_{13x}-F_{23x}}{F_{13y}-F_{23y}}=87°


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS