Question #199605

The equation of a particle executing SHM is x = 3 sin (2πt+π/6), where x is in meter and t is in seconds. 

Find the amplitude, time period, maximum speed and maximum acceleration. Also find the velocity and 

acceleration at t = 0.5 s.


1
Expert's answer
2021-05-27T19:06:50-0400

a) A=3 mA=3\ m.

b)

ω=2πf=2πT,\omega=2\pi f=\dfrac{2\pi}{T},T=2πω=2π2πs1=1 s.T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{2\pi s^{-1}}=1\ s.

c)

v=dxdt=ddt(3sin(2πt+π6))=32π s1cos(2πt+π6),v=\dfrac{dx}{dt}=\dfrac{d}{dt}(3 sin(2\pi t+\dfrac{\pi}{6}))=3\cdot2\pi\ s^{-1} cos(2\pi t+\dfrac{\pi}{6}),v=18.85 mscos(2πt+π6).v=18.85\ \dfrac{m}{s}\cdot cos(2\pi t+\dfrac{\pi}{6}).

Maximum speed will be when cos(2πt+π6)=1cos(2\pi t+\dfrac{\pi}{6})=1:


vmax=18.85 ms.v_{max}=18.85\ \dfrac{m}{s}.

d)

a=dvdt=ddt(18.85 mscos(2πt+π6)),a=\dfrac{dv}{dt}=\dfrac{d}{dt}(18.85\ \dfrac{m}{s}\cdot cos(2\pi t+\dfrac{\pi}{6})),a=18.85 ms2π s1sin(2πt+π6)=118.4 ms2sin(2πt+π6).a=-18.85\ \dfrac{m}{s}\cdot2\pi\ s^{-1}\cdot sin(2\pi t+\dfrac{\pi}{6})=-118.4\ \dfrac{m}{s^2}\cdot sin(2\pi t+\dfrac{\pi}{6}).

Maximum acceleration will be when sin(2πt+π6)=1sin(2\pi t+\dfrac{\pi}{6})=1:


amax=118.4 ms2.a_{max}=-118.4\ \dfrac{m}{s^2}.

e)

v(t=0.5 s)=18.85 mscos(2π s10.5 s+π6),v(t=0.5\ s)=18.85\ \dfrac{m}{s}\cdot cos(2\pi\ s^{-1}\cdot0.5\ s+\dfrac{\pi}{6}),v(t=0.5 s)=16.32 ms.v(t=0.5\ s)=-16.32\ \dfrac{m}{s}.

f)

a(t=0.5 s)=118.4 ms2sin(2π s10.5 s+π6),a(t=0.5\ s)=-118.4\ \dfrac{m}{s^2}\cdot sin(2\pi\ s^{-1}\cdot0.5\ s+\dfrac{\pi}{6}),a(t=0.5 s)=59.2 ms2.a(t=0.5\ s)=59.2\ \dfrac{m}{s^2}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS