Question #199558

 Water is circulating through a continuous solid pipe in a house. If the water is pumped at a velocity of 0.6 m/s through a diameter of 10 cm in the basement under a pressure of 3.039 x 10N/m2, what are the flow speed and pressure in a 4 cm diameter pipe 6m above? Note that Water has a density of 1000 kg/m3 . 


1
Expert's answer
2021-05-27T18:37:56-0400

a) Let's first find the flow speed in a 4 cm diameter pipe 6m above from the Law of Continuity:


A1v1=A2v2,A_1v_1=A_2v_2,v2=A1v1A2=πr12v1πr22,v_2=\dfrac{A_1v_1}{A_2}=\dfrac{\pi r_1^2v_1}{\pi r_2^2},v2=π(0.1 m)20.6 msπ(0.04 m)2=3.75 ms.v_2=\dfrac{\pi(0.1\ m)^2\cdot0.6\ \dfrac{m}{s}}{\pi(0.04\ m)^2}=3.75\ \dfrac{m}{s}.

b) We can find the pressure in a 4 cm diameter pipe 6m above from Bernoulli’s equation:


P1+ρgh1+12ρv12=P2+ρgh2+12ρv22,P_1+\rho gh_1+\dfrac{1}{2}\rho v_1^2= P_2+\rho gh_2+\dfrac{1}{2}\rho v_2^2,P2=P1+ρg(h1h2)+12ρ(v12v22),P_2=P_1+\rho g(h_1-h_2)+\dfrac{1}{2}\rho(v_1^2-v_2^2),

P2=3.039105 Pa+1000 kgm39.8 ms2(0 m6 m)+121000 kgm3((0.6 ms)2(3.75 ms)2)=2.4105 Pa.P_2=3.039\cdot10^5\ Pa+1000\ \dfrac{kg}{m^3}\cdot9.8\ \dfrac{m}{s^2}\cdot(0\ m-6\ m)+\dfrac{1}{2}\cdot1000\ \dfrac{kg}{m^3}\cdot((0.6\ \dfrac{m}{s})^2-(3.75\ \dfrac{m}{s})^2)=2.4\cdot10^5\ Pa.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Mbaeze martins
29.07.22, 12:01

This was very helpful thanks a lot

LATEST TUTORIALS
APPROVED BY CLIENTS