(a) Let q 1 = 3 μ C q_1=3\ \mu C q 1 = 3 μ C , q 2 = − 2 n C q_2=-2\ nC q 2 = − 2 n C and q 3 = 12 μ C q_3=12\ \mu C q 3 = 12 μ C .Then, we can find the net force on a −2nC charge as follows:
F n e t = F 32 − F 12 , F_{net}=F_{32}-F_{12}, F n e t = F 32 − F 12 , F n e t = k r 2 ( ∣ q 2 q 3 ∣ − ∣ q 1 q 2 ∣ ) , F_{net}=\dfrac{k}{r^2}(|q_2q_3|-|q_1q_2|), F n e t = r 2 k ( ∣ q 2 q 3 ∣ − ∣ q 1 q 2 ∣ ) , F n e t = 8.99 ⋅ 1 0 9 N m 2 C 2 ( 0.5 m ) 2 ( ∣ ( − 2 ⋅ 1 0 − 9 C ) ⋅ 12 ⋅ 1 0 − 6 C ∣ − ∣ 3 ⋅ 1 0 − 6 C ⋅ ( − 2 ⋅ 1 0 − 9 C ) ∣ ) = 6.47 ⋅ 1 0 − 4 N . F_{net}=\dfrac{8.99\cdot10^9\ \dfrac{Nm^2}{C^2}}{(0.5\ m)^2}(|(-2\cdot10^{-9}\ C)\cdot12\cdot10^{-6}\ C|-|3\cdot10^{-6}\ C\cdot(-2\cdot10^{-9}\ C)|)=6.47\cdot10^{-4}\ N. F n e t = ( 0.5 m ) 2 8.99 ⋅ 1 0 9 C 2 N m 2 ( ∣ ( − 2 ⋅ 1 0 − 9 C ) ⋅ 12 ⋅ 1 0 − 6 C ∣ − ∣3 ⋅ 1 0 − 6 C ⋅ ( − 2 ⋅ 1 0 − 9 C ) ∣ ) = 6.47 ⋅ 1 0 − 4 N .
The sign plus means that the net force directed to the right.
(b) Let q 1 = − 2 n C q_1=-2\ nC q 1 = − 2 n C , q 2 = 3 μ C q_2=3\ \mu C q 2 = 3 μ C and q 3 = 12 μ C q_3=12\ \mu C q 3 = 12 μ C .Then, we can find the net force on a −2nC charge as follows:
F n e t = F 21 + F 31 , F_{net}=F_{21}+F_{31}, F n e t = F 21 + F 31 , F n e t = k ( ∣ q 1 q 2 ∣ r 21 2 + ∣ q 1 q 3 ∣ r 31 2 ) , F_{net}=k(\dfrac{|q_1q_2|}{r_{21}^2}+\dfrac{|q_1q_3|}{r_{31}^2}), F n e t = k ( r 21 2 ∣ q 1 q 2 ∣ + r 31 2 ∣ q 1 q 3 ∣ ) , F n e t = 8.99 ⋅ 1 0 9 N m 2 C 2 ⋅ ( ∣ ( − 2 ⋅ 1 0 − 9 C ) ⋅ 3 ⋅ 1 0 − 6 C ∣ ( 0.5 m ) 2 + ∣ ( − 2 ⋅ 1 0 − 9 C ) ⋅ 12 ⋅ 1 0 − 6 C ∣ ( 1.5 m ) 2 ) = 3.12 ⋅ 1 0 − 4 N . F_{net}=8.99\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot(\dfrac{|(-2\cdot10^{-9}\ C)\cdot3\cdot10^{-6}\ C|}{(0.5\ m)^2}+\dfrac{|(-2\cdot10^{-9}\ C)\cdot12\cdot10^{-6}\ C|}{(1.5\ m)^2})=3.12\cdot10^{-4}\ N. F n e t = 8.99 ⋅ 1 0 9 C 2 N m 2 ⋅ ( ( 0.5 m ) 2 ∣ ( − 2 ⋅ 1 0 − 9 C ) ⋅ 3 ⋅ 1 0 − 6 C ∣ + ( 1.5 m ) 2 ∣ ( − 2 ⋅ 1 0 − 9 C ) ⋅ 12 ⋅ 1 0 − 6 C ∣ ) = 3.12 ⋅ 1 0 − 4 N .
The sign plus means that the net force directed to the right.
(c) Let q 1 = 3 μ C q_1=3\ \mu C q 1 = 3 μ C , q 2 = 12 μ C q_2=12\ \mu C q 2 = 12 μ C and q 3 = − 2 n C q_3=-2\ nC q 3 = − 2 n C . Let's first find the x x x - and y y y -components of the electric force:
F 13 , x = − k ⋅ ∣ q 1 q 3 ∣ r 13 2 ⋅ r 23 r 13 , F_{13,x}=-k\cdot\dfrac{|q_1q_3|}{r_{13}^2}\cdot\dfrac{r_{23}}{r_{13}}, F 13 , x = − k ⋅ r 13 2 ∣ q 1 q 3 ∣ ⋅ r 13 r 23 , F 13 , x = − 8.99 ⋅ 1 0 9 N m 2 C 2 ⋅ ∣ 3 ⋅ 1 0 − 6 C ⋅ ( − 2 ⋅ 1 0 − 9 C ) ∣ ( ( 1 m ) 2 + ( 0.5 m ) 2 ) 2 ⋅ 0.5 m ( 1 m ) 2 + ( 0.5 m ) 2 = − 1.93 ⋅ 1 0 − 5 N , F_{13,x}=-8.99\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot\dfrac{|3\cdot10^{-6}\ C\cdot(-2\cdot10^{-9}\ C)|}{(\sqrt{(1\ m)^2+(0.5\ m)^2})^2}\cdot\dfrac{0.5\ m}{\sqrt{(1\ m)^2+(0.5\ m)^2}}=-1.93\cdot10^{-5}\ N, F 13 , x = − 8.99 ⋅ 1 0 9 C 2 N m 2 ⋅ ( ( 1 m ) 2 + ( 0.5 m ) 2 ) 2 ∣3 ⋅ 1 0 − 6 C ⋅ ( − 2 ⋅ 1 0 − 9 C ) ∣ ⋅ ( 1 m ) 2 + ( 0.5 m ) 2 0.5 m = − 1.93 ⋅ 1 0 − 5 N ,
F 23 , x = 0 N , F_{23,x}=0\ N, F 23 , x = 0 N , F 13 , y = − k ⋅ ∣ q 1 q 3 ∣ r 13 2 ⋅ r 12 r 13 , F_{13,y}=-k\cdot\dfrac{|q_1q_3|}{r_{13}^2}\cdot\dfrac{r_{12}}{r_{13}}, F 13 , y = − k ⋅ r 13 2 ∣ q 1 q 3 ∣ ⋅ r 13 r 12 , F 13 , y = − 8.99 ⋅ 1 0 9 N m 2 C 2 ⋅ ∣ 3 ⋅ 1 0 − 6 C ⋅ ( − 2 ⋅ 1 0 − 9 C ) ∣ ( ( 1 m ) 2 + ( 0.5 m ) 2 ) 2 ⋅ 1.0 m ( 1 m ) 2 + ( 0.5 m ) 2 = − 3.86 ⋅ 1 0 − 5 N , F_{13,y}=-8.99\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot\dfrac{|3\cdot10^{-6}\ C\cdot(-2\cdot10^{-9}\ C)|}{(\sqrt{(1\ m)^2+(0.5\ m)^2})^2}\cdot\dfrac{1.0\ m}{\sqrt{(1\ m)^2+(0.5\ m)^2}}=-3.86\cdot10^{-5}\ N, F 13 , y = − 8.99 ⋅ 1 0 9 C 2 N m 2 ⋅ ( ( 1 m ) 2 + ( 0.5 m ) 2 ) 2 ∣3 ⋅ 1 0 − 6 C ⋅ ( − 2 ⋅ 1 0 − 9 C ) ∣ ⋅ ( 1 m ) 2 + ( 0.5 m ) 2 1.0 m = − 3.86 ⋅ 1 0 − 5 N ,
F 23 , y = − k ∣ q 2 q 3 ∣ r 23 2 , F_{23,y}=-k\dfrac{|q_2q_3|}{r_{23}^2}, F 23 , y = − k r 23 2 ∣ q 2 q 3 ∣ , F 23 , y = − 8.99 ⋅ 1 0 9 N m 2 C 2 ⋅ ∣ 12 ⋅ 1 0 − 6 C ⋅ ( − 2 ⋅ 1 0 − 9 C ) ∣ ( 0.5 m ) 2 = − 8.63 ⋅ 1 0 − 4 N , F_{23,y}=-8.99\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot\dfrac{|12\cdot10^{-6}\ C\cdot(-2\cdot10^{-9}\ C)|}{(0.5\ m)^2}=-8.63\cdot10^{-4}\ N, F 23 , y = − 8.99 ⋅ 1 0 9 C 2 N m 2 ⋅ ( 0.5 m ) 2 ∣12 ⋅ 1 0 − 6 C ⋅ ( − 2 ⋅ 1 0 − 9 C ) ∣ = − 8.63 ⋅ 1 0 − 4 N ,
F x = F 13 , x = − 1.93 ⋅ 1 0 − 5 N , F_x=F_{13,x}=-1.93\cdot10^{-5}\ N, F x = F 13 , x = − 1.93 ⋅ 1 0 − 5 N , F y = F 13 , y + F 23 , y , F_y=F_{13,y}+F_{23,y}, F y = F 13 , y + F 23 , y , F y = − 3.86 ⋅ 1 0 − 5 N + ( − 8.63 ⋅ 1 0 − 4 N ) = − 9.02 ⋅ 1 0 − 4 N . F_y=-3.86\cdot10^{-5}\ N+(-8.63\cdot10^{-4}\ N)=-9.02\cdot10^{-4}\ N. F y = − 3.86 ⋅ 1 0 − 5 N + ( − 8.63 ⋅ 1 0 − 4 N ) = − 9.02 ⋅ 1 0 − 4 N . We can find the net electric force on q 3 q_3 q 3 from the Pythagorean theorem:
F = F x 2 + F y 2 , F=\sqrt{F_x^2+F_y^2}, F = F x 2 + F y 2 , F = ( − 1.93 ⋅ 1 0 − 5 N ) 2 + ( − 9.02 ⋅ 1 0 − 4 N ) 2 = 9.02 ⋅ 1 0 − 4 N . F=\sqrt{(-1.93\cdot10^{-5}\ N)^2+(-9.02\cdot10^{-4}\ N)^2}=9.02\cdot10^{-4}\ N. F = ( − 1.93 ⋅ 1 0 − 5 N ) 2 + ( − 9.02 ⋅ 1 0 − 4 N ) 2 = 9.02 ⋅ 1 0 − 4 N . We can find the direction of the net electric force from the geometry:
θ = c o s − 1 F x F , \theta=cos^{-1}\dfrac{F_x}{F}, θ = co s − 1 F F x , θ = c o s − 1 − 1.93 ⋅ 1 0 − 5 N 9.02 ⋅ 1 0 − 4 N = 91. 2 ∘ . \theta=cos^{-1}\dfrac{-1.93\cdot10^{-5}\ N}{9.02\cdot10^{-4}\ N}=91.2^{\circ}. θ = co s − 1 9.02 ⋅ 1 0 − 4 N − 1.93 ⋅ 1 0 − 5 N = 91. 2 ∘ . The net electric force on charge q 3 q_3 q 3 directed 91. 2 ∘ 91.2^{\circ} 91. 2 ∘ below x x x -axis.
Comments