Question #199364

two charges +3uC and +12uC are fixed 1 m apart with the second one to the right. find the magnitude and direction of the net force on a -2-nC charge when placed at the following locations:




(a) halfway between the two


(b) half a m to the left of the +3uC charge


(c) half a m above the +12uC charge in a direction perpendicular to the line joining the two fixed charges.




1
Expert's answer
2021-05-27T12:30:22-0400

(a) Let q1=3 μCq_1=3\ \mu Cq2=2 nCq_2=-2\ nC and q3=12 μCq_3=12\ \mu C.Then, we can find the net force on a −2nC charge as follows:


Fnet=F32F12,F_{net}=F_{32}-F_{12},Fnet=kr2(q2q3q1q2),F_{net}=\dfrac{k}{r^2}(|q_2q_3|-|q_1q_2|),

Fnet=8.99109 Nm2C2(0.5 m)2((2109 C)12106 C3106 C(2109 C))=6.47104 N.F_{net}=\dfrac{8.99\cdot10^9\ \dfrac{Nm^2}{C^2}}{(0.5\ m)^2}(|(-2\cdot10^{-9}\ C)\cdot12\cdot10^{-6}\ C|-|3\cdot10^{-6}\ C\cdot(-2\cdot10^{-9}\ C)|)=6.47\cdot10^{-4}\ N.

The sign plus means that the net force directed to the right.

(b) Let q1=2 nCq_1=-2\ nCq2=3 μCq_2=3\ \mu C and q3=12 μCq_3=12\ \mu C.Then, we can find the net force on a −2nC charge as follows:


Fnet=F21+F31,F_{net}=F_{21}+F_{31},Fnet=k(q1q2r212+q1q3r312),F_{net}=k(\dfrac{|q_1q_2|}{r_{21}^2}+\dfrac{|q_1q_3|}{r_{31}^2}),

Fnet=8.99109 Nm2C2((2109 C)3106 C(0.5 m)2+(2109 C)12106 C(1.5 m)2)=3.12104 N.F_{net}=8.99\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot(\dfrac{|(-2\cdot10^{-9}\ C)\cdot3\cdot10^{-6}\ C|}{(0.5\ m)^2}+\dfrac{|(-2\cdot10^{-9}\ C)\cdot12\cdot10^{-6}\ C|}{(1.5\ m)^2})=3.12\cdot10^{-4}\ N.

The sign plus means that the net force directed to the right.

(c) Let q1=3 μCq_1=3\ \mu Cq2=12 μCq_2=12\ \mu C and q3=2 nCq_3=-2\ nC. Let's first find the xx- and yy-components of the electric force:


F13,x=kq1q3r132r23r13,F_{13,x}=-k\cdot\dfrac{|q_1q_3|}{r_{13}^2}\cdot\dfrac{r_{23}}{r_{13}},

F13,x=8.99109 Nm2C23106 C(2109 C)((1 m)2+(0.5 m)2)20.5 m(1 m)2+(0.5 m)2=1.93105 N,F_{13,x}=-8.99\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot\dfrac{|3\cdot10^{-6}\ C\cdot(-2\cdot10^{-9}\ C)|}{(\sqrt{(1\ m)^2+(0.5\ m)^2})^2}\cdot\dfrac{0.5\ m}{\sqrt{(1\ m)^2+(0.5\ m)^2}}=-1.93\cdot10^{-5}\ N,

F23,x=0 N,F_{23,x}=0\ N,F13,y=kq1q3r132r12r13,F_{13,y}=-k\cdot\dfrac{|q_1q_3|}{r_{13}^2}\cdot\dfrac{r_{12}}{r_{13}},

F13,y=8.99109 Nm2C23106 C(2109 C)((1 m)2+(0.5 m)2)21.0 m(1 m)2+(0.5 m)2=3.86105 N,F_{13,y}=-8.99\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot\dfrac{|3\cdot10^{-6}\ C\cdot(-2\cdot10^{-9}\ C)|}{(\sqrt{(1\ m)^2+(0.5\ m)^2})^2}\cdot\dfrac{1.0\ m}{\sqrt{(1\ m)^2+(0.5\ m)^2}}=-3.86\cdot10^{-5}\ N,

F23,y=kq2q3r232,F_{23,y}=-k\dfrac{|q_2q_3|}{r_{23}^2},

F23,y=8.99109 Nm2C212106 C(2109 C)(0.5 m)2=8.63104 N,F_{23,y}=-8.99\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot\dfrac{|12\cdot10^{-6}\ C\cdot(-2\cdot10^{-9}\ C)|}{(0.5\ m)^2}=-8.63\cdot10^{-4}\ N,



Fx=F13,x=1.93105 N,F_x=F_{13,x}=-1.93\cdot10^{-5}\ N,Fy=F13,y+F23,y,F_y=F_{13,y}+F_{23,y},Fy=3.86105 N+(8.63104 N)=9.02104 N.F_y=-3.86\cdot10^{-5}\ N+(-8.63\cdot10^{-4}\ N)=-9.02\cdot10^{-4}\ N.

We can find the net electric force on q3q_3 from the Pythagorean theorem:


F=Fx2+Fy2,F=\sqrt{F_x^2+F_y^2},F=(1.93105 N)2+(9.02104 N)2=9.02104 N.F=\sqrt{(-1.93\cdot10^{-5}\ N)^2+(-9.02\cdot10^{-4}\ N)^2}=9.02\cdot10^{-4}\ N.

We can find the direction of the net electric force from the geometry:


θ=cos1FxF,\theta=cos^{-1}\dfrac{F_x}{F},θ=cos11.93105 N9.02104 N=91.2.\theta=cos^{-1}\dfrac{-1.93\cdot10^{-5}\ N}{9.02\cdot10^{-4}\ N}=91.2^{\circ}.

The net electric force on charge q3q_3directed 91.291.2^{\circ} below xx-axis.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS