Question #198847

In a particle accelerator, two particles with masses such that m1 = 3m2 collide. Particle 1 is initially moving at 1.5 x 107 ms-1 and particle 2 is moving in the same direction at 0.5 x 107 ms-1


a. Calculate the final speed of each particle assuming the collision is elastic.


b. Calculate the final speed of each particle assuming the collision is perfectly inelastic.


1
Expert's answer
2021-05-26T16:35:22-0400

(a)  From the law of conservation of momentum, we have:


m1u1+m2u2=m1v1+m2v2.(1)m_1u_1+m_2u_2=m_1v_1+m_2v_2. (1)

Since collision is elastic, kinetic energy is conserved and we can write:


12m1u12+12m2u22=12m1v12+12m2v22.(2)\dfrac{1}{2}m_1u_1^2+\dfrac{1}{2}m_2u_2^2=\dfrac{1}{2}m_1v_1^2+\dfrac{1}{2}m_2v_2^2. (2)

Let’s rearrange equations (1) and (2):


m1(u1v1)=m2(v2u2),(3)m_1(u_1-v_1)=m_2(v_2-u_2), (3)m1(u12v12)=m2(v22u22).(4)m_1(u_1^2-v_1^2)=m_2(v_2^2-u_2^2). (4)

Let’s divide equation (4) by equation (3):


(u1v1)(u1+v1)u1v1=(v2u2)(v2+u2)v2u2,\dfrac{(u_1-v_1)(u_1+v_1)}{u_1-v_1}=\dfrac{(v_2-u_2)(v_2+u_2)}{v_2-u_2},u1+v1=u2+v2.(5)u_1+v_1=u_2+v_2. (5)

Let's express v2v_2 from the equation (5) in terms of u1u_1u2u_2 and v1v_1:


v2=u1u2+v1.(6)v_2=u_1-u_2+v_1. (6)

Let’s substitute equation (6) into equation (3). After simplification, we get:


(m1m2)u1+2m2u2=(m1+m2)v1.(m_1-m_2)u_1+2m_2u_2=(m_1+m_2)v_1.

From this equation we can find v1v_1:


v1=(m1m2)(m1+m2)u1+2m2(m1+m2)u2,v_1=\dfrac{(m_1-m_2)}{(m_1+m_2)}u_1+\dfrac{2m_2}{(m_1+m_2)}u_2,v1=(3m2m2)(3m2+m2)1.5107 ms+2m2(3m2+m2)0.5107 ms,v_1=\dfrac{(3m_2-m_2)}{(3m_2+m_2)}\cdot1.5\cdot10^7\ \dfrac{m}{s}+\dfrac{2m_2}{(3m_2+m_2)}\cdot0.5\cdot10^7\ \dfrac{m}{s},v1=1.0107 ms.v_1=1.0\cdot10^7\ \dfrac{m}{s}.


Substituting v1v_1into the equation (6) we can find v2v_2:


v2=2m1(m1+m2)u1+(m2m1)(m1+m2)u2,v_2=\dfrac{2m_1}{(m_1+m_2)}u_1+\dfrac{(m_2-m_1)}{(m_1+m_2)}u_2,v2=23m2(3m2+m2)1.5107 ms+(m23m2)(3m2+m2)0.5107 ms,v_2=\dfrac{2\cdot3m_2}{(3m_2+m_2)}\cdot1.5\cdot10^7\ \dfrac{m}{s}+\dfrac{(m_2-3m_2)}{(3m_2+m_2)}\cdot0.5\cdot10^7\ \dfrac{m}{s},v2=2.0107 ms.v_2=2.0\cdot10^7\ \dfrac{m}{s}.

b) From the law of conservation of momentum, we have:


m1u1+m2u2=(m1+m2)vf,m_1u_1+m_2u_2=(m_1+m_2)v_f,vf=m1u1+m2u2m1+m2,v_f=\dfrac{m_1u_1+m_2u_2}{m_1+m_2},vf=3m2u1+m2u23m2+m2=3u1+u24,v_f=\dfrac{3m_2u_1+m_2u_2}{3m_2+m_2}=\dfrac{3u_1+u_2}{4},vf=31.5107 ms+1.5107 ms4=1.5107 ms.v_f=\dfrac{3\cdot1.5\cdot10^7\ \dfrac{m}{s}+1.5\cdot10^7\ \dfrac{m}{s}}{4}=1.5\cdot10^7\ \dfrac{m}{s}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS