A 60°prism is of refractive index 1.5.calculate (a)the angle of minimum deviation. (b)the angle of refraction of the light passing through the prism at minimum deviation.(c)the Angle of incidence at minimum deviation.A=60°, n=1.5, dm=?n= sin½(dm+A) Sin½A
a) δmin=2α1−ϕ=2⋅sin−1[(nsinγ1)]−ϕ=\delta_{min}=2\alpha_1-\phi=2\cdot \sin^{-1}[(n\sin\gamma_1)]-\phi=δmin=2α1−ϕ=2⋅sin−1[(nsinγ1)]−ϕ=
=2⋅sin−1[(1.5⋅sin(ϕ/2))]−ϕ==2\cdot \sin^{-1}[(1.5\cdot\sin(\phi/2))]-\phi==2⋅sin−1[(1.5⋅sin(ϕ/2))]−ϕ=
=2⋅sin−1[(1.5⋅sin(60/2))]−60=37.18°=2\cdot \sin^{-1}[(1.5\cdot\sin(60/2))]-60=37.18°=2⋅sin−1[(1.5⋅sin(60/2))]−60=37.18° . Answer
b) γ1=ϕ/2=60/2=30°\gamma_1=\phi/2=60/2=30°γ1=ϕ/2=60/2=30° . Answer
c) α1=γ2=sin−1[(1.5⋅sin(60/2))]=48.59°\alpha_1=\gamma_2=\sin^{-1}[(1.5\cdot\sin(60/2))]=48.59°α1=γ2=sin−1[(1.5⋅sin(60/2))]=48.59° . Answer
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments