Question #191042

A bullet is fired straight upward with the velocity of 98 m/s from the

top of a building 100 m high. Find: a.) its maximum height above the ground b.) how long is

it in the air? c.) the velocity when it reaches the ground.


1
Expert's answer
2021-05-10T17:23:23-0400

(a) Let's first find the time that the bullet takes to reach its maximum height above the ground:


v=v0+gt,v=v_0+gt,0=v0+gt,0=v_0+gt,t=v0g=98 ms9.8 ms2=10 s.t=\dfrac{-v_0}{g}=\dfrac{-98\ \dfrac{m}{s}}{-9.8\ \dfrac{m}{s^2}}=10\ s.

Finally, we can find its maximum height above the ground from the kinematic equation:


ymax=y0+v0t+12gt2,y_{max}=y_0+v_0t+\dfrac{1}{2}gt^2,ymax=100 m+98 ms10 s+12(9.8 ms2)(10 s)2,y_{max}=100\ m+98\ \dfrac{m}{s}\cdot10\ s+\dfrac{1}{2}\cdot(-9.8\ \dfrac{m}{s^2})\cdot(10\ s)^2,ymax=590 m.y_{max}=590\ m.

(b) We can find the time of the bullet in the air from the kinematic equation:


y=y0+v0t+12gt2,y=y_0+v_0t+\dfrac{1}{2}gt^2,0=100+98t4.9t2,0=100+98t-4.9t^2,4.9t298t100=0.4.9t^2-98t-100=0.

This quadratic equation has two roots: t1=20.97 st_1=20.97\ s, t2=0.97st_2=-0.97 s. Since time can't be negative, the correct answer is t=20.97 st=20.97\ s.

(c) We can find the velocity when bullet reaches the ground from the kinematic equation:


v=v0+gt,v=v_0+gt,v=98 ms+(9.8 ms2)20.97 s=107.5 ms.v=98\ \dfrac{m}{s}+(-9.8\ \dfrac{m}{s^2})\cdot20.97\ s=-107.5\ \dfrac{m}{s}.

The sign minus means that the velocity of the bullet directed downward.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS