Question #190501

Prove that the following two equations represent the simple harmonic motion-

X = A cosωt + B sinωt

X = A eiωt


1
Expert's answer
2021-05-11T09:08:00-0400

The equation of harmonic oscillations is x(t)=Asin(ωt+ϕ)x(t)=A'\sin(\omega t+\phi) or x(t)=Acos(ωt+ϕ)x(t)=A'\cos(\omega t+\phi) . So,


a) x(t)=Asin(ωt+ϕ)=A(sinωt cosϕ+cosωtsinϕ)=x(t)=A'\sin(\omega t+\phi)=A'(\sin\omega t\cdot\ \cos\phi+\cos\omega t\cdot \sin\phi)=


=Asinωt cosϕ+Acosωtsinϕ=Bsinωt+Acosωt==A'\sin\omega t\cdot\ \cos\phi+A'\cos\omega t\cdot \sin\phi=B\sin\omega t+A\cos\omega t=


=Acosωt+Bsinωt=A\cos\omega t+B\sin\omega t . Proved



b) For the simple harmonic motion


d2x(t)dt2+x(t)ω2=0\frac{d^2x(t)}{dt^2}+x(t)\omega^2=0


x(t)=Aeiωtx(t)=Ae^{i\omega t}


Aω2eiωt+Aeiωtω2=0-A\omega^2e^{i\omega t}+Ae^{i\omega t}\omega^2=0 . Proved












Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS