The equation of harmonic oscillations is x(t)=A′sin(ωt+ϕ) or x(t)=A′cos(ωt+ϕ) . So,
a) x(t)=A′sin(ωt+ϕ)=A′(sinωt⋅ cosϕ+cosωt⋅sinϕ)=
=A′sinωt⋅ cosϕ+A′cosωt⋅sinϕ=Bsinωt+Acosωt=
=Acosωt+Bsinωt . Proved
b) For the simple harmonic motion
dt2d2x(t)+x(t)ω2=0
x(t)=Aeiωt
−Aω2eiωt+Aeiωtω2=0 . Proved
Comments