r ⃗ = v ⃗ 0 t + g ⃗ t 2 / 2 \vec r=\vec v_0t+\vec gt^2/2 r = v 0 t + g t 2 /2
v 0 t sin ( α + β ) = g t 2 2 cos β v_0t\sin(\alpha+\beta )=\frac{gt^2}{2}\cos\beta v 0 t sin ( α + β ) = 2 g t 2 cos β
cos β = 2000 3 0 2 + 200 0 2 = 0.999887 → β = 0.8613 ° \cos \beta=\frac{2000}{\sqrt{30^2+2000^2}}=0.999887\to \beta=0.8613° cos β = 3 0 2 + 200 0 2 2000 = 0.999887 → β = 0.8613°
v 0 cos α ⋅ t = 2000 → v 0 cos α = 2000 / 5 = 400 ( m / s ) v_0\cos\alpha\cdot t=2000\to v_0\cos \alpha=2000/5=400\ (m/s) v 0 cos α ⋅ t = 2000 → v 0 cos α = 2000/5 = 400 ( m / s )
v 0 t sin ( α + 0.8613 ) = 9.81 ⋅ 5 2 2 cos 0.8613 v_0t\sin(\alpha+0.8613 )=\frac{9.81\cdot 5^2}{2}\cos0.8613 v 0 t sin ( α + 0.8613 ) = 2 9.81 ⋅ 5 2 cos 0.8613
So, we have
5 v 0 sin ( α + 0.8613 ) = 122.61 → v 0 sin ( α + 0.8613 ) = 24.52 5v_0\sin(\alpha+0.8613 )=122.61\to v_0\sin(\alpha+0.8613 )=24.52 5 v 0 sin ( α + 0.8613 ) = 122.61 → v 0 sin ( α + 0.8613 ) = 24.52
v 0 sin ( α + 0.8613 ) = 24.52 v_0\sin(\alpha+0.8613 )=24.52 v 0 sin ( α + 0.8613 ) = 24.52
v 0 cos α = 400 v_0\cos \alpha=400 v 0 cos α = 400
sin ( α + 0.8613 ) cos α = 0.0613 → α = 2.65 ° \frac{\sin(\alpha+0.8613 )}{\cos\alpha}=0.0613\to\alpha=2.65° c o s α s i n ( α + 0.8613 ) = 0.0613 → α = 2.65° . Answer
v 0 = 400 / cos 2.65 ° = 400.43 ( m / s ) v_0=400/\cos2.65°=400.43\ (m/s) v 0 = 400/ cos 2.65° = 400.43 ( m / s ) . Answer
h = v 0 2 sin 2 2.65 ° / ( 2 g ) = 400.4 3 2 ⋅ sin 2 2.65 ° / ( 2 ⋅ 9.81 ) = 17.45 ( m ) h=v_0^2\sin^22.65°/(2g)=400.43^2\cdot\sin^22.65°/(2\cdot9.81)=17.45\ (m) h = v 0 2 sin 2 2.65°/ ( 2 g ) = 400.4 3 2 ⋅ sin 2 2.65°/ ( 2 ⋅ 9.81 ) = 17.45 ( m )
H = 30 + 17.45 = 47.45 ( m ) H=30+17.45=47.45\ (m) H = 30 + 17.45 = 47.45 ( m ) . Answer
Comments