Question #190221

A cannon fires a shell upward from the top of a cliff 30m high. If 5s later it hits target on the level ground which is 2km away, find its muzzle velocity and the angle of inclination and find the maximum height reached with respect to the ground.


1
Expert's answer
2021-05-08T14:37:41-0400

r=v0t+gt2/2\vec r=\vec v_0t+\vec gt^2/2


v0tsin(α+β)=gt22cosβv_0t\sin(\alpha+\beta )=\frac{gt^2}{2}\cos\beta


cosβ=2000302+20002=0.999887β=0.8613°\cos \beta=\frac{2000}{\sqrt{30^2+2000^2}}=0.999887\to \beta=0.8613°


v0cosαt=2000v0cosα=2000/5=400 (m/s)v_0\cos\alpha\cdot t=2000\to v_0\cos \alpha=2000/5=400\ (m/s)


v0tsin(α+0.8613)=9.81522cos0.8613v_0t\sin(\alpha+0.8613 )=\frac{9.81\cdot 5^2}{2}\cos0.8613


So, we have


5v0sin(α+0.8613)=122.61v0sin(α+0.8613)=24.525v_0\sin(\alpha+0.8613 )=122.61\to v_0\sin(\alpha+0.8613 )=24.52


v0sin(α+0.8613)=24.52v_0\sin(\alpha+0.8613 )=24.52


v0cosα=400v_0\cos \alpha=400


sin(α+0.8613)cosα=0.0613α=2.65°\frac{\sin(\alpha+0.8613 )}{\cos\alpha}=0.0613\to\alpha=2.65° . Answer

v0=400/cos2.65°=400.43 (m/s)v_0=400/\cos2.65°=400.43\ (m/s) . Answer


h=v02sin22.65°/(2g)=400.432sin22.65°/(29.81)=17.45 (m)h=v_0^2\sin^22.65°/(2g)=400.43^2\cdot\sin^22.65°/(2\cdot9.81)=17.45\ (m)


H=30+17.45=47.45 (m)H=30+17.45=47.45\ (m) . Answer







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS