Question #188841

An equilateral triangle 10.0m on a side has 1.00kg mass at one corner a 2.00kg mass at another corner and a 3.00kg mass at the third corner. Find the magnitude abd direction of the net force acting on the 2.00 kg mass


1
Expert's answer
2021-05-04T12:08:11-0400

F1=Gm1m2x2=6.67101112102=1.3341012 (N)F_1=G\frac{m_1\cdot m_2}{x^2}=6.67\cdot10^{-11}\cdot\frac{1\cdot2}{10^2}=1.334\cdot10^{-12} \ (N)


F2=Gm3m2x2=6.67101132102=4.0021012 (N)F_2=G\frac{m_3\cdot m_2}{x^2}=6.67\cdot10^{-11}\cdot\frac{3\cdot2}{10^2}=4.002\cdot10^{-12} \ (N)


F=F12+F22+2F1F2cos60°=F=\sqrt{F_1^2+F_2^2+2F_1F_2\cos60°}=


=(1.3341012)2+(4.0021012)2+21.33410124.0021012cos60°==\sqrt{(1.334\cdot10^{-12})^2+(4.002\cdot10^{-12})^2+2\cdot1.334\cdot10^{-12}\cdot 4.002\cdot10^{-12}\cdot \cos60°}=


=4.811012 (N)=4.81\cdot10^{-12}\ (N)


Fx=F1+F2cos60°=1.3341012+4.0021012cos60°=3.3351012 (N)F_x=F_1+F_2\cdot\cos60°=1.334\cdot10^{-12}+4.002\cdot10^{-12}\cdot\cos60°=3.335\cdot10^{-12}\ (N)


Fy=F2sin60°=4.0021012sin60°=3.461012 (N)F_y=F_2\cdot\sin60°=4.002\cdot 10^{-12}\cdot \sin60°=3.46\cdot 10^{-12} \ (N)


α=tan1FyFx=tan13.4610123.3351012=46°\alpha=\tan^{-1}\frac{F_y}{F_x}=\tan^{-1}\frac{3.46\cdot 10^{-12}}{3.335\cdot 10^{-12}}=46° (relative to the base 1-2)










Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS