Compute g at a distance of 6. 8 x 10⁷m from the center of a spherical object whose mass is 5.0 x 10²³kg.
Gravitational acceleration, created by the object of mass MMM at the distance rrr from the center of it is g=GMr2g = G \frac{M}{r^2}g=Gr2M, where G=6.67⋅10−11m3kg−1s−2G = 6.67 \cdot 10^{-11} m^3 kg^{-1} s^{-2}G=6.67⋅10−11m3kg−1s−2 is gravitational constant.
Hence, g=6.67⋅10−11m3kg−1s−2⋅5⋅1023kg(6.8⋅107m)2≈0.0072ms2g = \frac{ 6.67 \cdot 10^{-11} m^3 kg^{-1} s^{-2} \cdot 5 \cdot 10^{23} kg }{(6.8 \cdot 10^7 m)^2} \approx 0.0072 \frac{m}{s^2}g=(6.8⋅107m)26.67⋅10−11m3kg−1s−2⋅5⋅1023kg≈0.0072s2m.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments