Question #180901

Two blocks of weights W1 = W2 = 10KN rest on a rough inclined plane and are connected by a short piece of string as shown. If the coefficient of friction is μ1 = 0.20 and μ2 = 0.30 respectively: Determine a) The inclination of the plane for which sliding will impend.


1
Expert's answer
2021-04-15T10:32:31-0400

Draw the figure:


Sliding will start when the inclination exceeds angle θ\theta.

Forces acting on each block (the lower one is 1 and the upper one is 2):


1. x:f1+TWsinθ=0,y:WcosθN=0. 2. x:f2TWsinθ=0,y:WcosθN=0.1.\space x:f_1+T-W\sin\theta=0,\\ y: W\cos\theta-N=0.\\\space\\ 2.\space x:f_2-T-W\sin\theta=0,\\ y: W\cos\theta-N=0.

We also know that f=μNf=\mu N and see that Wcosθ=NW\cos\theta=N, so:


1. μ1Wcosθ+TWsinθ=0,2. μ2WcosθTWsinθ=0.1.\space \mu_1W\cos\theta+T-W\sin\theta=0,\\ 2.\space \mu_2W\cos\theta-T-W\sin\theta=0.

To exclude T, add these equations:


W(μ1+μ2)cosθ2Wsinθ=0,(μ1+μ2)cosθ=2sinθ, tanθ=μ1+μ22, θ=arctanμ1+μ22=14°.W(\mu_1+\mu_2)\cos\theta-2W\sin\theta=0,\\ (\mu_1+\mu_2)\cos\theta=2\sin\theta,\\\space\\ \tan\theta=\frac{\mu_1+\mu_2}{2},\\\space\\ \theta=\arctan\frac{\mu_1+\mu_2}{2}=14°.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS