(A) We can find the displacement of the runner from the Pythagorean theorem:
d = d x 2 + d y 2 = ( 16 k m ) 2 + ( 12 k m ) 2 = 20 k m . d=\sqrt{d_x^2+d_y^2}=\sqrt{(16\ km)^2+(12\ km)^2}=20\ km. d = d x 2 + d y 2 = ( 16 km ) 2 + ( 12 km ) 2 = 20 km . We can find the direction of displacement from the geometry:
θ = c o s − 1 ( d x d ) = 36. 9 ∘ N o f E . \theta=cos^{-1}(\dfrac{d_x}{d})=36.9^{\circ}\ N\ of\ E. θ = co s − 1 ( d d x ) = 36. 9 ∘ N o f E . (B) Average speed of the runner can be found as follows:
v a v g = T o t a l d i s t a n c e T o t a l t i m e = d 1 + d 2 t , v_{avg}=\dfrac{Total\ distance}{Total\ time}=\dfrac{d_1+d_2}{t}, v a vg = T o t a l t im e T o t a l d i s t an ce = t d 1 + d 2 , v a v g = 12 k m + 16 k m 3 h = 9.33 k m h . v_{avg}=\dfrac{12\ km+16\ km}{3\ h}=9.33\ \dfrac{km}{h}. v a vg = 3 h 12 km + 16 km = 9.33 h km . (C) Average velocity of the runner can be found as follows:
v ⃗ a v g = T o t a l d i s p l a c e m e n t T o t a l t i m e , \vec{v}_{avg}=\dfrac{Total\ displacement}{Total\ time}, v a vg = T o t a l t im e T o t a l d i s pl a ce m e n t , v ⃗ a v g = 20 k m [ 36. 9 ∘ N o f E ] 3 h = 6.67 m s [ 36. 9 ∘ N o f E ] . \vec{v}_{avg}=\dfrac{20\ km\ [36.9^{\circ}\ N\ of\ E]}{3\ h}=6.67\ \dfrac{m}{s}\ [36.9^{\circ}\ N\ of\ E]. v a vg = 3 h 20 km [ 36. 9 ∘ N o f E ] = 6.67 s m [ 36. 9 ∘ N o f E ] .
Comments
Tank you its is good work iam happy
It is best website but why take picture