Answer to Question #178066 in Physics for Fwangshak Lekshak

Question #178066

if A= i+j+2k, B= 2i+j+k, C= i-2j-2k. find the magnitude and direction cos of. 1. (A+B+C). 2. (A-B+C)


1
Expert's answer
2021-04-05T11:09:03-0400

Let A=(1,1,2),B=(2,1,1),C=(1,2,2)A = (1,1,2), B = (2,1,1), C = (1,-2,-2)


1) Adding the components, obtain:


v1=A+B+C=(1+2+1,1+12,2+12)=(4,0,1)\mathbf{v}_1 =\mathbf{A} + \mathbf{B} + \mathbf{C} = (1+2+1, 1+1-2,2+1-2) = (4,0,1)

The magnitude is:


v1=42+02+12=17|\mathbf{v}_1| = \sqrt{4^2 + 0^2 + 1^2} = \sqrt{17}

The direction cos are:


cosa=417cosb=017=0cosc=117\cos a = \dfrac{4}{\sqrt{17}}\\ \cos b = \dfrac{0}{\sqrt{17}} = 0\\ \cos c = \dfrac{1}{\sqrt{17}}

2) Adding the components, obtain:


v2=AB+C=(12+1,112,212)=(0,2,1)\mathbf{v}_2 =\mathbf{A} - \mathbf{B} + \mathbf{C} = (1-2+1, 1-1-2,2-1-2) = (0,-2,-1)

The magnitude is:


v1=02+(2)2+(1)2=5|\mathbf{v}_1| = \sqrt{0^2 + (-2)^2 + (-1)^2} = \sqrt{5}

The direction cos are:


cosa=05=0cosb=25cosc=15\cos a = \dfrac{0}{\sqrt{5}} = 0\\ \cos b = -\dfrac{2}{\sqrt{5}}\\ \cos c = -\dfrac{1}{\sqrt{5}}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment