Let "A = (1,1,2), B = (2,1,1), C = (1,-2,-2)"
1) Adding the components, obtain:
"\\mathbf{v}_1 =\\mathbf{A} + \\mathbf{B} + \\mathbf{C} = (1+2+1, 1+1-2,2+1-2) = (4,0,1)" The magnitude is:
"|\\mathbf{v}_1| = \\sqrt{4^2 + 0^2 + 1^2} = \\sqrt{17}" The direction cos are:
"\\cos a = \\dfrac{4}{\\sqrt{17}}\\\\\n\\cos b = \\dfrac{0}{\\sqrt{17}} = 0\\\\\n\\cos c = \\dfrac{1}{\\sqrt{17}}"
2) Adding the components, obtain:
"\\mathbf{v}_2 =\\mathbf{A} - \\mathbf{B} + \\mathbf{C} = (1-2+1, 1-1-2,2-1-2) = (0,-2,-1)" The magnitude is:
"|\\mathbf{v}_1| = \\sqrt{0^2 + (-2)^2 + (-1)^2} = \\sqrt{5}" The direction cos are:
"\\cos a = \\dfrac{0}{\\sqrt{5}} = 0\\\\\n\\cos b = -\\dfrac{2}{\\sqrt{5}}\\\\\n\\cos c = -\\dfrac{1}{\\sqrt{5}}"
Comments
Leave a comment