Let A = ( 1 , 1 , 2 ) , B = ( 2 , 1 , 1 ) , C = ( 1 , − 2 , − 2 ) A = (1,1,2), B = (2,1,1), C = (1,-2,-2) A = ( 1 , 1 , 2 ) , B = ( 2 , 1 , 1 ) , C = ( 1 , − 2 , − 2 )
1) Adding the components, obtain:
v 1 = A + B + C = ( 1 + 2 + 1 , 1 + 1 − 2 , 2 + 1 − 2 ) = ( 4 , 0 , 1 ) \mathbf{v}_1 =\mathbf{A} + \mathbf{B} + \mathbf{C} = (1+2+1, 1+1-2,2+1-2) = (4,0,1) v 1 = A + B + C = ( 1 + 2 + 1 , 1 + 1 − 2 , 2 + 1 − 2 ) = ( 4 , 0 , 1 ) The magnitude is:
∣ v 1 ∣ = 4 2 + 0 2 + 1 2 = 17 |\mathbf{v}_1| = \sqrt{4^2 + 0^2 + 1^2} = \sqrt{17} ∣ v 1 ∣ = 4 2 + 0 2 + 1 2 = 17 The direction cos are:
cos a = 4 17 cos b = 0 17 = 0 cos c = 1 17 \cos a = \dfrac{4}{\sqrt{17}}\\
\cos b = \dfrac{0}{\sqrt{17}} = 0\\
\cos c = \dfrac{1}{\sqrt{17}} cos a = 17 4 cos b = 17 0 = 0 cos c = 17 1
2) Adding the components, obtain:
v 2 = A − B + C = ( 1 − 2 + 1 , 1 − 1 − 2 , 2 − 1 − 2 ) = ( 0 , − 2 , − 1 ) \mathbf{v}_2 =\mathbf{A} - \mathbf{B} + \mathbf{C} = (1-2+1, 1-1-2,2-1-2) = (0,-2,-1) v 2 = A − B + C = ( 1 − 2 + 1 , 1 − 1 − 2 , 2 − 1 − 2 ) = ( 0 , − 2 , − 1 ) The magnitude is:
∣ v 1 ∣ = 0 2 + ( − 2 ) 2 + ( − 1 ) 2 = 5 |\mathbf{v}_1| = \sqrt{0^2 + (-2)^2 + (-1)^2} = \sqrt{5} ∣ v 1 ∣ = 0 2 + ( − 2 ) 2 + ( − 1 ) 2 = 5 The direction cos are:
cos a = 0 5 = 0 cos b = − 2 5 cos c = − 1 5 \cos a = \dfrac{0}{\sqrt{5}} = 0\\
\cos b = -\dfrac{2}{\sqrt{5}}\\
\cos c = -\dfrac{1}{\sqrt{5}} cos a = 5 0 = 0 cos b = − 5 2 cos c = − 5 1
Comments