Let q 1 = + 50 μ C , q 2 = − 30 μ C , q 3 = + 20 μ C , q 4 = − 40 μ C , q = + 15 μ C q_1 = +50\mu C, q_2 = -30\mu C, q_3 = +20\mu C, q_4 = -40\mu C, q = +15\mu C q 1 = + 50 μ C , q 2 = − 30 μ C , q 3 = + 20 μ C , q 4 = − 40 μ C , q = + 15 μ C , and A B = 8 c m = 0.08 m , B C = 6 c m = 0.06 m AB = 8cm = 0.08m, BC = 6cm = 0.06m A B = 8 c m = 0.08 m , BC = 6 c m = 0.06 m .
Then, according to the Pyphagorean theorem:
A O = B O = C O = D O = ( A B 2 ) 2 + ( A C 2 ) 2 = 0.0 4 2 + 0.0 3 2 = 0.05 m AO = BO = CO = DO = \sqrt{\left( \dfrac{AB}{2} \right)^2 + \left( \dfrac{AC}{2} \right)^2} = \sqrt{0.04^2 + 0.03^2} = 0.05m A O = BO = CO = D O = ( 2 A B ) 2 + ( 2 A C ) 2 = 0.0 4 2 + 0.0 3 2 = 0.05 m Then, according to the Coulomb's law, the force on q q q from q 1 q_1 q 1 is:
F 1 = k ∣ q ∣ ∣ q 1 ∣ A O 2 F_1 =k \dfrac{|q||q_1|}{AO^2} F 1 = k A O 2 ∣ q ∣∣ q 1 ∣ where k ≈ 9 × 1 0 9 N ⋅ m 2 / C 2 k\approx 9\times 10^9N\cdot m^2/C^2 k ≈ 9 × 1 0 9 N ⋅ m 2 / C 2 is the Coulomb's constant.
Thus, find:
F 1 = 9 × 1 0 9 ⋅ 15 × 1 0 − 6 ⋅ 50 × 1 0 − 6 0.0 5 2 = 2.7 × 1 0 3 N F_1 = 9\times 10^9\cdot \dfrac{15\times 10^{-6}\cdot 50\times 10^{-6}}{0.05^2} = 2.7\times 10^{3}N F 1 = 9 × 1 0 9 ⋅ 0.0 5 2 15 × 1 0 − 6 ⋅ 50 × 1 0 − 6 = 2.7 × 1 0 3 N The force on q q q from q 2 q_2 q 2 is:
F 2 = k ∣ q ∣ ∣ q 2 ∣ B O 2 = 1.62 × 1 0 3 N F_2 =k \dfrac{|q||q_2|}{BO^2} = 1.62\times 10^3N F 2 = k B O 2 ∣ q ∣∣ q 2 ∣ = 1.62 × 1 0 3 N The force on q q q from q 3 q_3 q 3 is:
F 3 = k ∣ q ∣ ∣ q 3 ∣ B O 2 = 1.08 × 1 0 3 N F_3 =k \dfrac{|q||q_3|}{BO^2} = 1.08\times 10^3N F 3 = k B O 2 ∣ q ∣∣ q 3 ∣ = 1.08 × 1 0 3 N The force on q q q from q 4 q_4 q 4 is:
F 4 = k ∣ q ∣ ∣ q 3 ∣ B O 2 = 2.16 × 1 0 3 N F_4 =k \dfrac{|q||q_3|}{BO^2} = 2.16\times 10^3N F 4 = k B O 2 ∣ q ∣∣ q 3 ∣ = 2.16 × 1 0 3 N The directions of these forces are show in figure above (like charges repel each other; unlike charges attract).
Adding the forces along A D AD A D and B C BC BC obtain:
F A D = F 1 − F 3 = 1.62 × 1 0 3 N F_{AD} = F_1-F_3 = 1.62\times 10^{3}N F A D = F 1 − F 3 = 1.62 × 1 0 3 N F B C = F 4 − F 2 = 0.54 × 1 0 3 N F_{BC} = F_4-F_2 = 0.54\times 10^{3}N F BC = F 4 − F 2 = 0.54 × 1 0 3 N These forces and their sum F F F are shown in figure below
According to the cosine law, the length of vector F F F is:
F = F B C 2 + F A D 2 − 2 F B C F A D cos ∠ B O D F = \sqrt{F_{BC}^2 + F_{AD}^2 - 2F_{BC}F_{AD}\cos\angle BOD} F = F BC 2 + F A D 2 − 2 F BC F A D cos ∠ BO D The angle ∠ B O D \angle BOD ∠ BO D is:
∠ B O D = 2 arccos ( O E O B ) = 2 arccos ( 0.04 0.05 ) = 2 arccos 0.8 \angle BOD = 2\arccos\left( \dfrac{OE}{OB} \right) = 2\arccos\left( \dfrac{0.04}{0.05} \right) = 2\arccos0.8 ∠ BO D = 2 arccos ( OB OE ) = 2 arccos ( 0.05 0.04 ) = 2 arccos 0.8 Substituting these values, obtain:
F = ( 0.54 × 1 0 3 ) 2 + ( 1.62 × 1 0 3 ) 2 − 2 ⋅ 0.54 ⋅ 1.62 × 1 0 6 ⋅ 0.28 ≈ 1.56 × 1 0 3 N F = \sqrt{(0.54\times 10^3)^2 + (1.62\times 10^3)^2 - 2\cdot 0.54\cdot 1.62\times 10^6\cdot 0.28}\approx 1.56\times 10^3N F = ( 0.54 × 1 0 3 ) 2 + ( 1.62 × 1 0 3 ) 2 − 2 ⋅ 0.54 ⋅ 1.62 × 1 0 6 ⋅ 0.28 ≈ 1.56 × 1 0 3 N
Answer. 1.56 × 1 0 3 N 1.56\times 10^3N 1.56 × 1 0 3 N .
Comments