Question #177277

A football, 1.25 kg, is thrown at a golf ball, 75 gm. The football is moving at 190.0 m/s to the right while the golf ball is moving 35.0 m/s to the left. What are their velocities after an elastic collision in one dimension?


1
Expert's answer
2021-04-01T07:50:35-0400

Let’s find the formula for the final velocities of the football and golf ball in case of elastic collision. From the law of conservation of momentum, we have:


m1u1+m2u2=m1v1+m2v2.(1)m_1u_1+m_2u_2=m_1v_1+m_2v_2. (1)

Since collision is elastic, kinetic energy is conserved and we can write:


12m1u12+12m2u22=12m1v12+12m2v22.(2)\dfrac{1}{2}m_1u_1^2+\dfrac{1}{2}m_2u_2^2=\dfrac{1}{2}m_1v_1^2+\dfrac{1}{2}m_2v_2^2. (2)

Let’s rearrange equations (1) and (2):


m1(u1v1)=m2(v2u2),(3)m_1(u_1-v_1)=m_2(v_2-u_2), (3)m1(u12v12)=m2(v22u22).(4)m_1(u_1^2-v_1^2)=m_2(v_2^2-u_2^2). (4)

Let’s divide equation (4) by equation (3):


(u1v1)(u1+v1)u1v1=(v2u2)(v2+u2)v2u2,\dfrac{(u_1-v_1)(u_1+v_1)}{u_1-v_1}=\dfrac{(v_2-u_2)(v_2+u_2)}{v_2-u_2},u1+v1=u2+v2.(5)u_1+v_1=u_2+v_2. (5)

Let's express v2v_2 from the equation (5) in terms of u1u_1u2u_2 and v1v_1:


v2=u1u2+v1.(6)v_2=u_1-u_2+v_1. (6)

Let’s substitute equation (6) into equation (3). After simplification, we get:


(m1m2)u1+2m2u2=(m1+m2)v1.(m_1-m_2)u_1+2m_2u_2=(m_1+m_2)v_1.

From this equation we can find the final velocity of the football, v1v_1:


v1=(m1m2)(m1+m2)u1+2m2(m1+m2)u2,v_1=\dfrac{(m_1-m_2)}{(m_1+m_2)}u_1+\dfrac{2m_2}{(m_1+m_2)}u_2,v1=(1.25 kg0.075 kg)(1.25 kg+0.075 kg)190 ms+20.075 kg(1.25 kg+0.075 kg)(35 ms),v_1=\dfrac{(1.25\ kg-0.075\ kg)}{(1.25\ kg+0.075\ kg)}\cdot190\ \dfrac{m}{s}+\dfrac{2\cdot0.075\ kg}{(1.25\ kg+0.075\ kg)}\cdot(-35\ \dfrac{m}{s}),v1=164.53 ms.v_1=164.53\ \dfrac{m}{s}.


Substituting v1v_1into the equation (6) we can find the final velocity of the golf ball, v2v_2:


v2=2m1(m1+m2)u1+(m2m1)(m1+m2)u2,v_2=\dfrac{2m_1}{(m_1+m_2)}u_1+\dfrac{(m_2-m_1)}{(m_1+m_2)}u_2,v2=21.25 kg(1.25 kg+0.075 kg)190 ms+(0.075 kg1.25 kg)(1.25 kg+0.075 kg)(35 ms),v_2=\dfrac{2\cdot1.25\ kg}{(1.25\ kg+0.075\ kg)}\cdot190\ \dfrac{m}{s}+\dfrac{(0.075\ kg-1.25\ kg)}{(1.25\ kg+0.075\ kg)}\cdot(-35\ \dfrac{m}{s}),v2=389.53 ms.v_2=389.53\ \dfrac{m}{s}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS