Answer to Question #177277 in Physics for hassan faraz

Question #177277

A football, 1.25 kg, is thrown at a golf ball, 75 gm. The football is moving at 190.0 m/s to the right while the golf ball is moving 35.0 m/s to the left. What are their velocities after an elastic collision in one dimension?


1
Expert's answer
2021-04-01T07:50:35-0400

Let’s find the formula for the final velocities of the football and golf ball in case of elastic collision. From the law of conservation of momentum, we have:


"m_1u_1+m_2u_2=m_1v_1+m_2v_2. (1)"

Since collision is elastic, kinetic energy is conserved and we can write:


"\\dfrac{1}{2}m_1u_1^2+\\dfrac{1}{2}m_2u_2^2=\\dfrac{1}{2}m_1v_1^2+\\dfrac{1}{2}m_2v_2^2. (2)"

Let’s rearrange equations (1) and (2):


"m_1(u_1-v_1)=m_2(v_2-u_2), (3)""m_1(u_1^2-v_1^2)=m_2(v_2^2-u_2^2). (4)"

Let’s divide equation (4) by equation (3):


"\\dfrac{(u_1-v_1)(u_1+v_1)}{u_1-v_1}=\\dfrac{(v_2-u_2)(v_2+u_2)}{v_2-u_2},""u_1+v_1=u_2+v_2. (5)"

Let's express "v_2" from the equation (5) in terms of "u_1""u_2" and "v_1":


"v_2=u_1-u_2+v_1. (6)"

Let’s substitute equation (6) into equation (3). After simplification, we get:


"(m_1-m_2)u_1+2m_2u_2=(m_1+m_2)v_1."

From this equation we can find the final velocity of the football, "v_1":


"v_1=\\dfrac{(m_1-m_2)}{(m_1+m_2)}u_1+\\dfrac{2m_2}{(m_1+m_2)}u_2,""v_1=\\dfrac{(1.25\\ kg-0.075\\ kg)}{(1.25\\ kg+0.075\\ kg)}\\cdot190\\ \\dfrac{m}{s}+\\dfrac{2\\cdot0.075\\ kg}{(1.25\\ kg+0.075\\ kg)}\\cdot(-35\\ \\dfrac{m}{s}),""v_1=164.53\\ \\dfrac{m}{s}."


Substituting "v_1"into the equation (6) we can find the final velocity of the golf ball, "v_2":


"v_2=\\dfrac{2m_1}{(m_1+m_2)}u_1+\\dfrac{(m_2-m_1)}{(m_1+m_2)}u_2,""v_2=\\dfrac{2\\cdot1.25\\ kg}{(1.25\\ kg+0.075\\ kg)}\\cdot190\\ \\dfrac{m}{s}+\\dfrac{(0.075\\ kg-1.25\\ kg)}{(1.25\\ kg+0.075\\ kg)}\\cdot(-35\\ \\dfrac{m}{s}),""v_2=389.53\\ \\dfrac{m}{s}."

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS