Answer to Question #176082 in Physics for Hansen Warndeh

Question #176082

Form the cross product of vector A = 23km 37° and vector C = 47km 193°


1
Expert's answer
2021-03-29T09:01:45-0400

Let's first find the "x"- and "y"-components of vectors A and C:


"A_x=Acos\\theta=23\\ km\\cdot cos37^{\\circ}=18.37\\ km,""A_y=Asin\\theta=23\\ km\\cdot sin37^{\\circ}=13.84\\ km,""C_x=Ccos\\theta=47\\ km\\cdot cos193^{\\circ}=-45.8\\ km,""C_y=Csin\\theta=47\\ km\\cdot sin193^{\\circ}=-10.6\\ km."

We can find the cross product of vector A and vector C as follows:


"\\vec{A}\\times \\vec{C}=\\begin{vmatrix}\n A_x & A_y \\\\\n C_x & C_y\n\\end{vmatrix}\\cdot\\vec{k},""\\vec{A}\\times \\vec{C}=(A_xC_y-C_xA_y)\\cdot\\vec{k},""\\vec{A}\\times \\vec{C}=(18.37\\ km\\cdot(-10.6\\ km)-(-45.8\\ km)\\cdot13.84\\ km)\\cdot\\vec{k},""\\vec{A}\\times \\vec{C}=(439.15\\ km^2)\\cdot\\vec{k}"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS