Question #176082

Form the cross product of vector A = 23km 37° and vector C = 47km 193°


1
Expert's answer
2021-03-29T09:01:45-0400

Let's first find the xx- and yy-components of vectors A and C:


Ax=Acosθ=23 kmcos37=18.37 km,A_x=Acos\theta=23\ km\cdot cos37^{\circ}=18.37\ km,Ay=Asinθ=23 kmsin37=13.84 km,A_y=Asin\theta=23\ km\cdot sin37^{\circ}=13.84\ km,Cx=Ccosθ=47 kmcos193=45.8 km,C_x=Ccos\theta=47\ km\cdot cos193^{\circ}=-45.8\ km,Cy=Csinθ=47 kmsin193=10.6 km.C_y=Csin\theta=47\ km\cdot sin193^{\circ}=-10.6\ km.

We can find the cross product of vector A and vector C as follows:


A×C=AxAyCxCyk,\vec{A}\times \vec{C}=\begin{vmatrix} A_x & A_y \\ C_x & C_y \end{vmatrix}\cdot\vec{k},A×C=(AxCyCxAy)k,\vec{A}\times \vec{C}=(A_xC_y-C_xA_y)\cdot\vec{k},A×C=(18.37 km(10.6 km)(45.8 km)13.84 km)k,\vec{A}\times \vec{C}=(18.37\ km\cdot(-10.6\ km)-(-45.8\ km)\cdot13.84\ km)\cdot\vec{k},A×C=(439.15 km2)k\vec{A}\times \vec{C}=(439.15\ km^2)\cdot\vec{k}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS