Let's first find the "x"- and "y"-components of vectors A and C:
"A_x=Acos\\theta=23\\ km\\cdot cos37^{\\circ}=18.37\\ km,""A_y=Asin\\theta=23\\ km\\cdot sin37^{\\circ}=13.84\\ km,""C_x=Ccos\\theta=47\\ km\\cdot cos193^{\\circ}=-45.8\\ km,""C_y=Csin\\theta=47\\ km\\cdot sin193^{\\circ}=-10.6\\ km."We can find the cross product of vector A and vector C as follows:
"\\vec{A}\\times \\vec{C}=\\begin{vmatrix}\n A_x & A_y \\\\\n C_x & C_y\n\\end{vmatrix}\\cdot\\vec{k},""\\vec{A}\\times \\vec{C}=(A_xC_y-C_xA_y)\\cdot\\vec{k},""\\vec{A}\\times \\vec{C}=(18.37\\ km\\cdot(-10.6\\ km)-(-45.8\\ km)\\cdot13.84\\ km)\\cdot\\vec{k},""\\vec{A}\\times \\vec{C}=(439.15\\ km^2)\\cdot\\vec{k}"
Comments
Leave a comment