Let's first find the x- and y-components of vectors A and C:
Ax=Acosθ=23 km⋅cos37∘=18.37 km,Ay=Asinθ=23 km⋅sin37∘=13.84 km,Cx=Ccosθ=47 km⋅cos193∘=−45.8 km,Cy=Csinθ=47 km⋅sin193∘=−10.6 km.We can find the cross product of vector A and vector C as follows:
A×C=∣∣AxCxAyCy∣∣⋅k,A×C=(AxCy−CxAy)⋅k,A×C=(18.37 km⋅(−10.6 km)−(−45.8 km)⋅13.84 km)⋅k,A×C=(439.15 km2)⋅k
Comments