Question #172492

A wind turbine is rotating counterclockwise at 0.5 rev/s and slows to a stop in 10 s. Its blades are 20 m in length


1)The angular acceleration of the turbine is


2)The centripetal acceleration of the tip of the blades at t=0s is


3)The magnitude of the total linear acceleration of the tip of the blades at t=0s is


4)The direction of the total linear acceleration of the tip of the blades at t=0s is Blank ____° counterclockwise


1
Expert's answer
2021-03-18T16:52:52-0400

1) We can find the angular acceleration of the turbine as follows:


ω=ω0+αt,\omega=\omega_0+\alpha t,α=ωω0t,\alpha=\dfrac{\omega-\omega_0}{t},α=00.5 revs2π rad1 rev10 s=0.314 rads2.\alpha=\dfrac{0-0.5\ \dfrac{rev}{s}\cdot\dfrac{2\pi\ rad}{1\ rev}}{10\ s}=-0.314\ \dfrac{rad}{s^2}.

The sign minus means that the turbine decelerates.

2) We can find centripetal acceleration of the tip of the blades as follows:


ac=ω02R=(0.5 revs2π rad1 rev)220 m=197.2 ms2.a_c=\omega_0^2R=(0.5\ \dfrac{rev}{s}\cdot\dfrac{2\pi\ rad}{1\ rev})^2\cdot20\ m=197.2\ \dfrac{m}{s^2}.

3) Let's first find the tangential acceleration of the tip of the blades:


at=αR=(0.314 rads2)20 m=6.28 ms2.a_t=\alpha R=(-0.314\ \dfrac{rad}{s^2})\cdot20\ m=-6.28\ \dfrac{m}{s^2}.

Finally, we can find the magnitude of the total linear acceleration of the tip of the blades from the Pythagorean theorem:


a=ac2+at2=(197.2 ms2)2+(6.28 ms2)2=197.3 ms2.a=\sqrt{a_c^2+a_t^2}=\sqrt{(197.2\ \dfrac{m}{s^2})^2+(-6.28\ \dfrac{m}{s^2})^2}=197.3\ \dfrac{m}{s^2}.

4) We can find the direction of the total linear acceleration of the tip of the blades from the geometry:


tanθ=atac,tan\theta=\dfrac{|a_t|}{|a_c|},θ=tan1(atac),\theta=tan^{-1}(\dfrac{|a_t|}{|a_c|}),θ=tan1(6.28 ms2197.3 ms2)=1.82.\theta=tan^{-1}(\dfrac{|-6.28\ \dfrac{m}{s^2}|}{|197.3\ \dfrac{m}{s^2}|})=1.82^{\circ}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS