Answer to Question #172058 in Physics for Ashley

Question #172058

An α-particle has a charge of +2e and a mass of 6.64 × 10-27 kg. It is accelerated from rest through a potential difference that has a value of 1.85 × 106 V and then enters a uniform magnetic field whose magnitude is 2.65 T. The α-particle moves perpendicular to the magnetic field at all times. What is (a) the speed of the α-particle, (b) the magnitude of the magnetic force on it, and (c) the radius of its circular path?


1
Expert's answer
2021-03-17T16:55:52-0400

(a) Let's write the law of conservation of energy:


"KE_1+PE_1=KE_2+PE_2,""\\dfrac{1}{2}mv_1^2+qV_1=\\dfrac{1}{2}mv_2^2+qV_2."

Since the alpha-particle accelerates from rest, "v_1=0". Then, we get:


"v_2=\\sqrt{\\dfrac{2q(V_1-V_2)}{m}},""v_2=\\sqrt{\\dfrac{2\\cdot2\\cdot1.6\\cdot10^{-19}\\ C\\cdot1.85\\cdot10^6\\ V}{6.64\\cdot10^{-27}\\ kg}}=1.33\\cdot10^7\\ \\dfrac{m}{s}."

(b) We can find the magnitude of the magnetic force as follows:


"F_B=qvBsin\\theta,""F_B=2\\cdot1.6\\cdot10^{-19}\\ C\\cdot1.33\\cdot10^7\\ \\dfrac{m}{s}\\cdot2.65\\ T\\cdot sin90^{\\circ}=1.13\\cdot10^{-11}\\ N."

(c) We can find the radius of the circular path from the formula:


"r=\\dfrac{mv}{qB}=\\dfrac{6.64\\cdot10^{-27}\\ kg\\cdot1.33\\cdot10^7\\ \\dfrac{m}{s}}{2\\cdot1.6\\cdot10^{-19}\\ C\\cdot2.65\\ T}=0.104\\ m."

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS