Question #172058

An α-particle has a charge of +2e and a mass of 6.64 × 10-27 kg. It is accelerated from rest through a potential difference that has a value of 1.85 × 106 V and then enters a uniform magnetic field whose magnitude is 2.65 T. The α-particle moves perpendicular to the magnetic field at all times. What is (a) the speed of the α-particle, (b) the magnitude of the magnetic force on it, and (c) the radius of its circular path?


1
Expert's answer
2021-03-17T16:55:52-0400

(a) Let's write the law of conservation of energy:


KE1+PE1=KE2+PE2,KE_1+PE_1=KE_2+PE_2,12mv12+qV1=12mv22+qV2.\dfrac{1}{2}mv_1^2+qV_1=\dfrac{1}{2}mv_2^2+qV_2.

Since the alpha-particle accelerates from rest, v1=0v_1=0. Then, we get:


v2=2q(V1V2)m,v_2=\sqrt{\dfrac{2q(V_1-V_2)}{m}},v2=221.61019 C1.85106 V6.641027 kg=1.33107 ms.v_2=\sqrt{\dfrac{2\cdot2\cdot1.6\cdot10^{-19}\ C\cdot1.85\cdot10^6\ V}{6.64\cdot10^{-27}\ kg}}=1.33\cdot10^7\ \dfrac{m}{s}.

(b) We can find the magnitude of the magnetic force as follows:


FB=qvBsinθ,F_B=qvBsin\theta,FB=21.61019 C1.33107 ms2.65 Tsin90=1.131011 N.F_B=2\cdot1.6\cdot10^{-19}\ C\cdot1.33\cdot10^7\ \dfrac{m}{s}\cdot2.65\ T\cdot sin90^{\circ}=1.13\cdot10^{-11}\ N.

(c) We can find the radius of the circular path from the formula:


r=mvqB=6.641027 kg1.33107 ms21.61019 C2.65 T=0.104 m.r=\dfrac{mv}{qB}=\dfrac{6.64\cdot10^{-27}\ kg\cdot1.33\cdot10^7\ \dfrac{m}{s}}{2\cdot1.6\cdot10^{-19}\ C\cdot2.65\ T}=0.104\ m.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS