By the definition of the average velocity, we have:
v a v g = d t o t t t o t . v_{avg}=\dfrac{d_{tot}}{t_{tot}}. v a vg = t t o t d t o t . Let's find the total time:
t t o t = t 1 + t 2 = 1 h + 2 h = 3 h . t_{tot}=t_1+t_2=1\ h+2\ h=3\ h. t t o t = t 1 + t 2 = 1 h + 2 h = 3 h .
Let's write the resultant vector of the average velocity:
v a v g = ( 75 3 ) i + ( 60 3 ) j . v_{avg}=(\dfrac{75}{3})i+(\dfrac{60}{3})j. v a vg = ( 3 75 ) i + ( 3 60 ) j .
We can find the magnitude of the total displacement from the Pythagorean theorem:
d t o t = d x 2 + d y 2 = ( 75 k m ) 2 + ( 60 k m ) 2 = 96 k m . d_{tot}=\sqrt{d_x^2+d_y^2}=\sqrt{(75\ km)^2+(60\ km)^2}=96\ km. d t o t = d x 2 + d y 2 = ( 75 km ) 2 + ( 60 km ) 2 = 96 km . Therefore, the magnitude of the average velocity can be found as follows:
v a v g = 96 k m 3 h = 32 k m h . v_{avg}=\dfrac{96\ km}{3\ h}=32\ \dfrac{km}{h}. v a vg = 3 h 96 km = 32 h km . We can find the direction of the average velocity as follows:
θ = t a n − 1 ( v y v x ) , \theta=tan^{-1}(\dfrac{v_y}{v_x}), θ = t a n − 1 ( v x v y ) , θ = t a n − 1 ( 60 k m 75 k m ) = 38. 6 ∘ N o f E . \theta=tan^{-1}(\dfrac{60\ km}{75\ km})=38.6^{\circ}\ N\ of\ E. θ = t a n − 1 ( 75 km 60 km ) = 38. 6 ∘ N o f E .
Comments
Thank u so much