Question #171777

if three forces f1 =20n, 30 degree north east, f2 = 50n along west, f3 =40n, 50 degree north west act on a body. find the resultant in magnitude and direction


1
Expert's answer
2021-03-16T11:36:25-0400

Let's find the xx- and yy-components of the resultant force:


Fres,x=F1x+F2x+F3x,F_{res,x}=F_{1x}+F_{2x}+F_{3x},

Fres,x=20 Ncos30+50 Ncos180+40 Ncos(18050)=58.4 N,F_{res,x}=20\ N\cdot cos30^{\circ}+50\ N\cdot cos180^{\circ}+40\ N\cdot cos(180^{\circ}-50^{\circ})=-58.4\ N,


Fres,y=F1y+F2y+F3y,F_{res,y}=F_{1y}+F_{2y}+F_{3y},

Fres,y=20 Nsin30+50 Nsin180+40 Nsin(18050)=40.64 N.F_{res,y}=20\ N\cdot sin30^{\circ}+50\ N\cdot sin180^{\circ}+40\ N\cdot sin(180^{\circ}-50^{\circ})=40.64\ N.

We can find the magnitude of the resultant force from the Pythagorean theorem:


Fres=Fres,x2+Fres,y2,F_{res}=\sqrt{F_{res,x}^2+F_{res,y}^2},Fres=(58.4 N)2+(40.64 N)2=71.15 N.F_{res}=\sqrt{(-58.4\ N)^2+(40.64\ N)^2}=71.15\ N.

We can find the direction of the resultant force from the geometry:


θ=sin1(Fres,yFres),\theta=sin^{-1}(\dfrac{F_{res,y}}{F_{res}}),θ=sin1(40.64 N71.15 N)=34.8.\theta=sin^{-1}(\dfrac{40.64\ N}{71.15\ N})=34.8^{\circ}.

The direction of the resultant force is 34.8 N of W.34.8^{\circ}\ N\ of\ W.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS