Let's find the x x x - and y y y -components of the resultant force:
F r e s , x = F 1 x + F 2 x + F 3 x , F_{res,x}=F_{1x}+F_{2x}+F_{3x}, F res , x = F 1 x + F 2 x + F 3 x , F r e s , x = 20 N ⋅ c o s 3 0 ∘ + 50 N ⋅ c o s 18 0 ∘ + 40 N ⋅ c o s ( 18 0 ∘ − 5 0 ∘ ) = − 58.4 N , F_{res,x}=20\ N\cdot cos30^{\circ}+50\ N\cdot cos180^{\circ}+40\ N\cdot cos(180^{\circ}-50^{\circ})=-58.4\ N, F res , x = 20 N ⋅ cos 3 0 ∘ + 50 N ⋅ cos 18 0 ∘ + 40 N ⋅ cos ( 18 0 ∘ − 5 0 ∘ ) = − 58.4 N ,
F r e s , y = F 1 y + F 2 y + F 3 y , F_{res,y}=F_{1y}+F_{2y}+F_{3y}, F res , y = F 1 y + F 2 y + F 3 y , F r e s , y = 20 N ⋅ s i n 3 0 ∘ + 50 N ⋅ s i n 18 0 ∘ + 40 N ⋅ s i n ( 18 0 ∘ − 5 0 ∘ ) = 40.64 N . F_{res,y}=20\ N\cdot sin30^{\circ}+50\ N\cdot sin180^{\circ}+40\ N\cdot sin(180^{\circ}-50^{\circ})=40.64\ N. F res , y = 20 N ⋅ s in 3 0 ∘ + 50 N ⋅ s in 18 0 ∘ + 40 N ⋅ s in ( 18 0 ∘ − 5 0 ∘ ) = 40.64 N .
We can find the magnitude of the resultant force from the Pythagorean theorem:
F r e s = F r e s , x 2 + F r e s , y 2 , F_{res}=\sqrt{F_{res,x}^2+F_{res,y}^2}, F res = F res , x 2 + F res , y 2 , F r e s = ( − 58.4 N ) 2 + ( 40.64 N ) 2 = 71.15 N . F_{res}=\sqrt{(-58.4\ N)^2+(40.64\ N)^2}=71.15\ N. F res = ( − 58.4 N ) 2 + ( 40.64 N ) 2 = 71.15 N . We can find the direction of the resultant force from the geometry:
θ = s i n − 1 ( F r e s , y F r e s ) , \theta=sin^{-1}(\dfrac{F_{res,y}}{F_{res}}), θ = s i n − 1 ( F res F res , y ) , θ = s i n − 1 ( 40.64 N 71.15 N ) = 34. 8 ∘ . \theta=sin^{-1}(\dfrac{40.64\ N}{71.15\ N})=34.8^{\circ}. θ = s i n − 1 ( 71.15 N 40.64 N ) = 34. 8 ∘ . The direction of the resultant force is 34. 8 ∘ N o f W . 34.8^{\circ}\ N\ of\ W. 34. 8 ∘ N o f W .
Comments