Question #171540

 The springs of a 1700-kg car compress 5.0 mm when its 66-kg driver gets into the driver’s seat. If the car goes over a bump, what will be the frequency of oscillations? Ignore damping.


1
Expert's answer
2021-03-16T11:37:50-0400

Find spring compression without the driver:


x1=Mgk.x_1=\frac{Mg}{k}.

With the driver:


x2=x1+Δx=(M+m)gk, Mgk+Δx=(M+m)gk, Δx=mgk, k=mgΔx.x_2=x_1+\Delta x=\frac{(M+m)g}{k},\\\space\\ \frac{Mg}{k}+\Delta x=\frac{(M+m)g}{k},\\\space\\ \Delta x=\frac{mg}{k},\\\space\\ k=\frac{mg}{\Delta x}.

Now remember the formula for the period of oscillations of the spring-mass system:


T=2πmtotalk=2π(m+M)k.T=2\pi\sqrt{\frac{m_\text{total}}k}=2\pi\sqrt{\frac{(m+M)}k}.

And frequency of oscillations is... inverse of period:


f=1T=12πkm+M=12πmgΔx(m+M). f=12π669.80.005(66+1700)=1.36 Hz.f=\frac 1T=\frac{1}{2\pi}\sqrt{\frac{k}{m+M}}=\frac{1}{2\pi}\sqrt{\frac{mg}{\Delta x(m+M)}}.\\\space\\ f=\frac{1}{2\pi}\sqrt{\frac{66·9.8}{0.005(66+1700)}}=1.36\text{ Hz}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS