Find spring compression without the driver:
x 1 = M g k . x_1=\frac{Mg}{k}. x 1 = k M g . With the driver:
x 2 = x 1 + Δ x = ( M + m ) g k , M g k + Δ x = ( M + m ) g k , Δ x = m g k , k = m g Δ x . x_2=x_1+\Delta x=\frac{(M+m)g}{k},\\\space\\
\frac{Mg}{k}+\Delta x=\frac{(M+m)g}{k},\\\space\\
\Delta x=\frac{mg}{k},\\\space\\
k=\frac{mg}{\Delta x}. x 2 = x 1 + Δ x = k ( M + m ) g , k M g + Δ x = k ( M + m ) g , Δ x = k m g , k = Δ x m g . Now remember the formula for the period of oscillations of the spring-mass system:
T = 2 π m total k = 2 π ( m + M ) k . T=2\pi\sqrt{\frac{m_\text{total}}k}=2\pi\sqrt{\frac{(m+M)}k}. T = 2 π k m total = 2 π k ( m + M ) . And frequency of oscillations is... inverse of period:
f = 1 T = 1 2 π k m + M = 1 2 π m g Δ x ( m + M ) . f = 1 2 π 66 ⋅ 9.8 0.005 ( 66 + 1700 ) = 1.36 Hz . f=\frac 1T=\frac{1}{2\pi}\sqrt{\frac{k}{m+M}}=\frac{1}{2\pi}\sqrt{\frac{mg}{\Delta x(m+M)}}.\\\space\\
f=\frac{1}{2\pi}\sqrt{\frac{66·9.8}{0.005(66+1700)}}=1.36\text{ Hz}. f = T 1 = 2 π 1 m + M k = 2 π 1 Δ x ( m + M ) m g . f = 2 π 1 0.005 ( 66 + 1700 ) 66 ⋅ 9.8 = 1.36 Hz .
Comments