Question #170709

Test the divergence theorem for the function v = (xy) X+ (2yz) y+ (3zx) Z. Take as your volume the cube shown in Fig. 1.30, with sides of length 2.


1
Expert's answer
2021-03-17T16:58:12-0400
V=020202(y+2z+3x)dxdydzV=20202(y+2+3x)dxdyV=2202(3+3x)dxV=48V1=020202(y)dydzdx=8V2=020202(3x)dxdydz=24V3=020202(2z)dxdydz=168+24+16=48V=\int_0^2\int_0^2\int_0^2(y+2z+3x)dxdydz\\V=2\int_0^2\int_0^2(y+2+3x)dxdy \\V=2^2\int_0^2(3+3x)dx\\V=48\\ V_1=\int_0^2\int_0^2\int_0^2(y)dydzdx=8\\ V_2=\int_0^2\int_0^2\int_0^2(3x)dxdydz=24\\V_3=\int_0^2\int_0^2\int_0^2(2z)dxdydz=16\\8+24+16=48


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS