Question #169976

a block of mass 0.25Kg is placed on top of light vertical spring of force constant 500N/m pushed down so that the spring is compressed by 0.10m after the block is released from rest it travels upward and leaves the spring what is the maximum height


1
Expert's answer
2021-03-09T15:28:35-0500

Let's first find the velocity of the block after it released from the law of conservation of energy:


PE=KE,PE=KE,12kx2=12mv2,\dfrac{1}{2}kx^2=\dfrac{1}{2}mv^2,v=kx2m=500 Nm(0.1 m)20.25 kg=20 ms2.v=\dfrac{kx^2}{m}=\dfrac{500\ \dfrac{N}{m}\cdot(0.1\ m)^2}{0.25\ kg}=20\ \dfrac{m}{s^2}.

Let's find the time that the block takes to reach the maximum height:


vy=v0gt,v_y=v_{0}-gt,0=v0gt0=v_{0}-gtt=v0g=20 ms9.8 ms2=2.04 s.t=\dfrac{v_0}{g}=\dfrac{20\ \dfrac{m}{s}}{9.8\ \dfrac{m}{s^2}}=2.04\ s.

Finally, we can find the maximum height reached by the block:


ymax=v0t12gt2,y_{max}=v_0t-\dfrac{1}{2}gt^2,ymax=20 ms2.04 s129.8 ms2(2.04 s)2=20.4 m.y_{max}=20\ \dfrac{m}{s}\cdot2.04\ s-\dfrac{1}{2}\cdot9.8\ \dfrac{m}{s^2}\cdot(2.04\ s)^2=20.4\ m.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS